Displaying 81 – 100 of 341

Showing per page

Existence and continuous dependence results in the dynamical theory of piezoelectricity

Michele Ciarletta (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The paper is concerned with the dynamical theory of linear piezoelectricity. First, an existence theorem is derived. Then, the continuous dependence of the solutions upon the initial data and body forces is investigated.

Existence globale pour un fluide inhomogène

Hammadi Abidi, Marius Paicu (2007)

Annales de l’institut Fourier

Dans cet article on s’intéresse à l’existence et l’unicité globale de solutions pour le système de Navier-Stokes à densité variable, lorsque la donnée initiale de la vitesse est dans l’espace de Besov homogène de régularité critique B p , 1 - 1 + N p ( N ) . Notons que ce résultat fait suite aux résultats de H. Abidi qui a généralisé le travail de R. Danchin. Toutefois, dans les travaux antérieurs, l’existence de la solution est obtenue pour 1 < p < 2 N et l’unicité est démontrée sous l’hypothèse plus restrictive 1 < p N . Notre résultat...

Explosion pour l’équation de Schrödinger au régime du “log log”

Nicolas Burq (2005/2006)

Séminaire Bourbaki

On présente dans cet exposé des résultats récents de Merle et Raphael sur l’analyse des solutions explosives de l’équation de Schrödinger L 2 critique. On s’intéresse en particulier à leur preuve du fait que les solutions d’énergie négative (dont on savait qu’elles explosaient par l’argument du viriel) et dont la norme L 2 est proche de celle de l’état fondamental, explosent au régime du “log log”et que ce comportement est stable.

Currently displaying 81 – 100 of 341