Previous Page 2

Displaying 21 – 39 of 39

Showing per page

Résonances de Rayleigh en dimension 2

Didier Gamblin (2004)

Bulletin de la Société Mathématique de France

Nous étudions les résonances de Rayleigh créées par un obstacle strictement convexe à bord analytique en dimension 2. Nous montrons qu’il existe exactement deux suites de résonances ( z k , + ) et ( z k , - ) convergeant exponentiellement vite vers l’axe réel dans un voisinage polynomial de l’axe réel, et exponentiellement proches d’une suite de quasimodes réels. De plus, k - 1 z k , ± est un symbole analytique d’ordre 0 en la variable k - 1 dont on donne le premier terme du développement. Nous construisons pour cela des quasimodes...

Semilinear elliptic problems with nonlinearities depending on the derivative

David Arcoya, Naira del Toro (2003)

Commentationes Mathematicae Universitatis Carolinae

We deal with the boundary value problem - Δ u ( x ) = λ 1 u ( x ) + g ( u ( x ) ) + h ( x ) , x Ω u ( x ) = 0 , x Ω where Ω N is an smooth bounded domain, λ 1 is the first eigenvalue of the Laplace operator with homogeneous Dirichlet boundary conditions on Ω , h L max { 2 , N / 2 } ( Ω ) and g : N is bounded and continuous. Bifurcation theory is used as the right framework to show the existence of solution provided that g satisfies certain conditions on the origin and at infinity.

Solutions to a perturbed critical semilinear equation concerning the N -Laplacian in N

Elliot Tonkes (1999)

Commentationes Mathematicae Universitatis Carolinae

The aim of this paper is to study the existence of variational solutions to a nonhomogeneous elliptic equation involving the N -Laplacian - Δ N u - div ( | u | N - 2 u ) = e ( x , u ) + h ( x ) in Ω where u W 0 1 , N ( N ) , Ω is a bounded smooth domain in N , N 2 , e ( x , u ) is a critical nonlinearity in the sense of the Trudinger-Moser inequality and h ( x ) ( W 0 1 , N ) * is a small perturbation.

Spectral projection, residue of the scattering amplitude and Schrödinger group expansion for barrier-top resonances

Jean-François Bony, Setsuro Fujiié, Thierry Ramond, Maher Zerzeri (2011)

Annales de l’institut Fourier

We study the spectral projection associated to a barrier-top resonance for the semiclassical Schrödinger operator. First, we prove a resolvent estimate for complex energies close to such a resonance. Using that estimate and an explicit representation of the resonant states, we show that the spectral projection has a semiclassical expansion in integer powers of h , and compute its leading term. We use this result to compute the residue of the scattering amplitude at such a resonance. Eventually, we...

The Singularity Expansion Method applied to the transient motions of a floating elastic plate

Christophe Hazard, François Loret (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we propose an original approach for the simulation of the time-dependent response of a floating elastic plate using the so-called Singularity Expansion Method. This method consists in computing an asymptotic behaviour for large time obtained by means of the Laplace transform by using the analytic continuation of the resolvent of the problem. This leads to represent the solution as the sum of a discrete superposition of exponentially damped oscillating motions associated to the poles...

[unknown]

Semyon Dyatlov (0)

Annales de l’institut Fourier

Currently displaying 21 – 39 of 39

Previous Page 2