Displaying 1021 – 1040 of 1422

Showing per page

Self-similar solutions for the two-dimensional Nernst-Planck-Debye system

Łukasz Paszkowski (2012)

Applicationes Mathematicae

We investigate the two-component Nernst-Planck-Debye system by a numerical study of self-similar solutions using the Runge-Kutta method of order four and comparing the results obtained with the solutions of a one-component system. Properties of the solutions indicated by numerical simulations are proved and an existence result is established based on comparison arguments for singular ordinary differential equations.

Self-similar solutions in reaction-diffusion systems

Joanna Rencławowicz (2003)

Banach Center Publications

In this paper we examine self-similar solutions to the system u i t - d i Δ u i = k = 1 m u k p k i , i = 1,…,m, x N , t > 0, u i ( 0 , x ) = u 0 i ( x ) , i = 1,…,m, x N , where m > 1 and p k i > 0 , to describe asymptotics near the blow up point.

Self-similarity in chemotaxis systems

Yūki Naito, Takashi Suzuki (2008)

Colloquium Mathematicae

We consider a system which describes the scaling limit of several chemotaxis systems. We focus on self-similarity, and review some recent results on forward and backward self-similar solutions to the system.

Semiclassical measures for the Schrödinger equation on the torus

Nalini Anantharaman, Fabricio Macià (2014)

Journal of the European Mathematical Society

In this article, the structure of semiclassical measures for solutions to the linear Schrödinger equation on the torus is analysed. We show that the disintegration of such a measure on every invariant lagrangian torus is absolutely continuous with respect to the Lebesgue measure. We obtain an expression of the Radon-Nikodym derivative in terms of the sequence of initial data and show that it satisfies an explicit propagation law. As a consequence, we also prove an observability inequality, saying...

Sharp estimates for bubbling solutions of a fourth order mean field equation

Chang-Shou Lin, Juncheng Wei (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider a sequence of multi-bubble solutions u k of the following fourth order equation Δ 2 u k = ρ k h ( x ) e u k Ω h e u k in Ω , u k = Δ u k = 0 on Ω , ( * ) where h is a C 2 , β positive function, Ω is a bounded and smooth domain in 4 , and ρ k is a constant such that ρ k C . We show that (after extracting a subsequence), lim k + ρ k = 32 σ 3 m for some positive integer m 1 , where σ 3 is the area of the unit sphere in 4 . Furthermore, we obtain the following sharp estimates for  ρ k : ρ k - 32 σ 3 m = c 0 j = 1 m ϵ k , j 2 l j Δ G 4 ( p j , p l ) + Δ R 4 ( p j , p j ) + 1 32 σ 3 Δ log h ( p j ) + o j = 1 m ϵ k , j 2 where c 0 > 0 , log 64 ϵ k , j 4 = max x B δ ( p j ) u k ( x ) - log ( Ω h e u k ) and u k 32 σ 3 j = 1 m G 4 ( · , p j ) in C loc 4 ( Ω { p 1 , ... , p m } ) . This yields a bound of solutions as ρ k converges to 32 σ 3 m from below provided that j = 1 m l j Δ G 4 ( p j , p l ) + Δ R 4 ( p j , p j ) + 1 32 σ 3 Δ log h ( p j ) > 0 . The analytic work of...

Similarity stabilizes blow-up

Steve Schochet (1999)

Journées équations aux dérivées partielles

The blow-up of solutions to a quasilinear heat equation is studied using a similarity transformation that turns the equation into a nonlocal equation whose steady solutions are stable. This allows energy methods to be used, instead of the comparison principles used previously. Among the questions discussed are the time and location of blow-up of perturbations of the steady blow-up profile.

Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions

Gabriel Acosta, Julián Fernández Bonder, Pablo Groisman, Julio Daniel Rossi (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study the asymptotic behavior of a semi-discrete numerical approximation for a pair of heat equations u t = Δ u , v t = Δ v in Ω × ( 0 , T ) ; fully coupled by the boundary conditions u η = u p 11 v p 12 , v η = u p 21 v p 22 on Ω × ( 0 , T ) , where Ω is a bounded smooth domain in d . We focus in the existence or not of non-simultaneous blow-up for a semi-discrete approximation ( U , V ) . We prove that if U blows up in finite time then V can fail to blow up if and only if p 11 > 1 and p 21 < 2 ( p 11 - 1 ) , which is the same condition as the one for non-simultaneous blow-up in the continuous problem. Moreover,...

Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions

Gabriel Acosta, Julián Fernández Bonder, Pablo Groisman, Julio Daniel Rossi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study the asymptotic behavior of a semi-discrete numerical approximation for a pair of heat equations ut = Δu, vt = Δv in Ω x (0,T); fully coupled by the boundary conditions u η = u p 11 v p 12 , v η = u p 21 v p 22 on ∂Ω x (0,T), where Ω is a bounded smooth domain in d . We focus in the existence or not of non-simultaneous blow-up for a semi-discrete approximation (U,V). We prove that if U blows up in finite time then V can fail to blow up if and only if p11 > 1 and p21 < 2(p11 - 1) , which is the same condition as...

Single-point blow-up for a semilinear parabolic system

Ph. Souplet (2009)

Journal of the European Mathematical Society

We consider positive solutions of the system u t - Δ u = v p ; v t - Δ v = u q in a ball or in the whole space, with p , q > 1 . Relatively little is known on the blow-up set for semilinear parabolic systems and, up to now, no result was available for this basic system except for the very special case p = q . Here we prove single-point blow-up for a large class of radial decreasing solutions. This in particular solves a problem left open in a paper of A. Friedman and Y. Giga (1987). We also obtain lower pointwise estimates for the final...

Singular limit of a transmission problem for the parabolic phase-field model

Giulio Schimperna (2000)

Applications of Mathematics

A transmission problem describing the thermal interchange between two regions occupied by possibly different fluids, which may present phase transitions, is studied in the framework of the Caginalp-Fix phase field model. Dirichlet (or Neumann) and Cauchy conditions are required. A regular solution is obtained by means of approximation techniques for parabolic systems. Then, an asymptotic study of the problem is carried out as the time relaxation parameter for the phase field tends to 0 in one of...

Singular Perturbation Analysis of Travelling Waves for a Model in Phytopathology

J. B. Burie, A. Calonnec, A. Ducrot (2010)

Mathematical Modelling of Natural Phenomena

We investigate the structure of travelling waves for a model of a fungal disease propagating over a vineyard. This model is based on a set of ODEs of the SIR-type coupled with two reaction-diffusion equations describing the dispersal of the spores produced by the fungus inside and over the vineyard. An estimate of the biological parameters in the model suggests to use a singular perturbation analysis. It allows us to compute the speed and the profile of the travelling waves. The analytical results...

Currently displaying 1021 – 1040 of 1422