Über die Beschränktheit der zweiten Ableitungen der Lösungen nichtlinearer elliptischer Differentialgleichungen.
On montre comment le formalisme introduit récemment par l’auteur et Benoît Perthame permet de justifier la plupart des estimations d’erreurs pour des solutions approchées d’une loi de conservation scalaire.
This paper concerns with the finite volume scheme for nonlinear tensor diffusion in image processing. First we provide some basic information on this type of diffusion including a construction of its diffusion tensor. Then we derive a semi-implicit scheme with the help of so-called diamond-cell method (see [Coirier1] and [Coirier2]). Further, we prove existence and uniqueness of a discrete solution given by our scheme. The proof is based on a gradient bound in the tangential direction by a gradient...
We consider the first initial boundary value problem for nonautonomous quasilinear degenerate parabolic equations involving weighted p-Laplacian operators, in which the nonlinearity satisfies the polynomial condition of arbitrary order and the external force is normal. Using the asymptotic a priori estimate method, we prove the existence of uniform attractors for this problem. The results, in particular, improve some recent ones for nonautonomous p-Laplacian equations.
We consider complex-valued solutions of the Ginzburg–Landau equation on a smooth bounded simply connected domain of , , where is a small parameter. We assume that the Ginzburg–Landau energy verifies the bound (natural in the context) , where is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of , as , is to establish uniform bounds for the gradient, for some . We review some recent techniques developed in...
We consider complex-valued solutions uE of the Ginzburg–Landau equation on a smooth bounded simply connected domain Ω of , N ≥ 2, where ε > 0 is a small parameter. We assume that the Ginzburg–Landau energy verifies the bound (natural in the context) , where M0 is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of uE, as ε → 0, is to establish uniform Lp bounds for the gradient, for some p>1. We review some...
In this note we prove the exponential decay of solutions of a quasilinear wave equation with linear damping and source terms.
In this paper we present some results on the uniqueness and existence of a class of weak solutions (the so called BV solutions) of the Cauchy-Dirichlet problem associated to the doubly nonlinear diffusion equationb(u)t - div (|∇u - k(b(u))e|p-2 (∇u - k(b(u))e)) + g(x,u) = f(t,x).This problem arises in the study of some turbulent regimes: flows of incompressible turbulent fluids through porous media, gases flowing in pipelines, etc. The solvability of this problem is established in the BVt(Q) space....