Displaying 481 – 500 of 920

Showing per page

On behavior of solutions to a chemotaxis system with a nonlinear sensitivity function

Senba, Takasi, Fujie, Kentarou (2017)

Proceedings of Equadiff 14

In this paper, we consider solutions to the following chemotaxis system with general sensitivity τ u t = Δ u - · ( u χ ( v ) ) in Ω × ( 0 , ) , η v t = Δ v - v + u in Ω × ( 0 , ) , u ν = u ν = 0 on Ω × ( 0 , ) . Here, τ and η are positive constants, χ is a smooth function on ( 0 , ) satisfying χ ' ( · ) > 0 and Ω is a bounded domain of 𝐑 n ( n 2 ). It is well known that the chemotaxis system with direct sensitivity ( χ ( v ) = χ 0 v , χ 0 > 0 ) has blowup solutions in the case where n 2 . On the other hand, in the case where χ ( v ) = χ 0 log v with 0 < χ 0 1 , any solution to the system exists globally in time and is bounded. We present a sufficient condition for the boundedness of...

On bilinear estimates for wave equations

Sergiù Klainerman, Damiano Foschi (1999)

Journées équations aux dérivées partielles

I will start with a short review of the classical restriction theorem for the sphere and Strichartz estimates for the wave equation. I then plan to give a detailed presentation of their recent generalizations in the form of “Bilinear Estimates”. In addition to the L 2 theory, which is now quite well developed, I plan to discuss a more general point of view concerning the L p theory. By investigating simple examples I will derive necessary conditions for such estimates to be true. I also plan to discuss...

On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations

Jérôme Le Rousseau, Gilles Lebeau (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are presented. We point out the connexion of these optimality results to the local phase-space geometry after conjugation...

On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations∗∗∗

Jérôme Le Rousseau, Gilles Lebeau (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are presented. We point out the connexion of these optimality results to the local phase-space geometry after conjugation...

On Korn's second inequality

J. A. Nitsche (1981)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

On periodic solutions of a special type of the beam equation

Jan Řeháček (1988)

Aplikace matematiky

The paper deals with the existence of time-periodic solutions to the beam equation, in which terms expressing torsion and damping are also considered. The existence of periodic solutions is proved in the cas of time-periodic outer forces by means of an apriori estimate and the Fourier method.

Currently displaying 481 – 500 of 920