Displaying 61 – 80 of 96

Showing per page

On the Klainerman–Machedon conjecture for the quantum BBGKY hierarchy with self-interaction

Xuwen Chen, Justin Holmer (2016)

Journal of the European Mathematical Society

We consider the 3D quantum BBGKY hierarchy which corresponds to the N -particle Schrödinger equation. We assume the pair interaction is N 3 β 1 V ( B β ) . For the interaction parameter β ( 0 , 2 / 3 ) , we prove that, provided an energy bound holds for solutions to the BBKGY hierarchy, the N limit points satisfy the space-time bound conjectured by S. Klainerman and M. Machedon [45] in 2008. The energy bound was proven to hold for β ( 0 , 3 / 5 ) in [28]. This allows, in the case β ( 0 , 3 / 5 ) , for the application of the Klainerman–Machedon uniqueness theorem...

On the long-time behaviour of solutions of the p-Laplacian parabolic system

Paweł Goldstein (2008)

Colloquium Mathematicae

Convergence of global solutions to stationary solutions for a class of degenerate parabolic systems related to the p-Laplacian operator is proved. A similar result is obtained for a variable exponent p. In the case of p constant, the convergence is proved to be ¹ l o c , and in the variable exponent case, L² and W 1 , p ( x ) -weak.

On the second order derivatives of convex functions on the Heisenberg group

Cristian E. Gutiérrez, Annamaria Montanari (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In the euclidean setting the celebrated Aleksandrov-Busemann-Feller theorem states that convex functions are a.e. twice differentiable. In this paper we prove that a similar result holds in the Heisenberg group, by showing that every continuous –convex function belongs to the class of functions whose second order horizontal distributional derivatives are Radon measures. Together with a recent result by Ambrosio and Magnani, this proves the existence a.e. of second order horizontal derivatives for...

Currently displaying 61 – 80 of 96