Page 1

Displaying 1 – 8 of 8

Showing per page

Régularité des solutions d'équations aux dérivées partielles non linéaires associées à un système de champs de vecteurs

Chao-Jiang Xu (1987)

Annales de l'institut Fourier

Cet article considère des équations aux dérivées partielles non linéaires de la forme F ( x , X α u ) = 0 , | α | m , où les X 1 , ... , X p sont des champs de vecteur vérifiant la condition de Hörmander. Soit u une solution réelle de classe C 2 m + 1 ; on suppose que la localisation de l’opérateur linéarisé sur le groupe de Lie associé au système { X j } est hypoelliptique; nous démontrons sous ces hypothèses que u est de classe C .

Remarks on Carleman estimates and exact controllability of the Lamé system

Oleg Yu. Imanuvilov, Masahiro Yamamoto (2002)

Journées équations aux dérivées partielles

In this paper we established the Carleman estimate for the two dimensional Lamé system with the zero Dirichlet boundary conditions. Using this estimate we proved the exact controllability result for the Lamé system with with a control locally distributed over a subdomain which satisfies to a certain type of nontrapping conditions.

Remarques sur l’observabilité pour l’équation de Laplace

Kim-Dang Phung (2003)

ESAIM: Control, Optimisation and Calculus of Variations

Nous quantifions la propriété de continuation unique pour le laplacien dans un domaine borné quand la condition aux bords est a priori inconnue. Nous établissons une estimation de dépen-dance de type logarithmique suivant la terminologie de John [5]. Les outils utilisés reposent sur les inégalités de Carleman et les techniques des travaux de Robbiano [8, 11]. Aussi, nous déterminons en application de l’inégalité d’observabilité obtenue un coût du contrôle approché pour un problème elliptique modèle....

Remarques sur l'observabilité pour l'équation de Laplace

Kim-Dang Phung (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the Laplace equation in a smooth bounded domain. We prove logarithmic estimates, in the sense of John [5] of solutions on a part of the boundary or of the domain without known boundary conditions. These results are established by employing Carleman estimates and techniques that we borrow from the works of Robbiano [8,11]. Also, we establish an estimate on the cost of an approximate control for an elliptic model equation.

Currently displaying 1 – 8 of 8

Page 1