The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 4 of 4

Showing per page

The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation

Juan Luis Vázquez (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We review the main mathematical questions posed in blow-up problems for reaction-diffusion equations and discuss results of the author and collaborators on the subjects of continuation of solutions after blow-up, existence of transient blow-up solutions (so-called peaking solutions) and avalanche formation as a mechanism of complete blow-up.

Three cylinder inequalities and unique continuation properties for parabolic equations

Sergio Vessella (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We prove the following unique continuation property. Let u be a solution of a second order linear parabolic equation and S a segment parallel to the t -axis. If u has a zero of order faster than any non constant and time independent polynomial at each point of S then u vanishes in each point, x , t , such that the plane t = t has a non empty intersection with S .

Currently displaying 1 – 4 of 4

Page 1