Soliton dynamics for the Korteweg-de Vries equation with multiplicative homogeneous noise.
We review some recent results concerning Gibbs measures for nonlinear Schrödinger equations (NLS), with implications for the theory of the NLS, including stability and typicality of solitary wave structures. In particular, we discuss the Gibbs measures of the discrete NLS in three dimensions, where there is a striking phase transition to soliton-like behavior.
For open sets with a piecewise smooth boundary it is shown that a solution of the Dirichlet problem for the Laplace equation can be expressed in the form of the sum of the single layer potential and the double layer potential with the same density, where this density is given by a concrete series.
2000 Mathematics Subject Classification: 35C15, 35D05, 35D10, 35S10, 35S99.We give here examples of equations of type (1) ∂tt2 y -p(t, Dx) y = 0, where p is a singular pseudo-differential operator with regular global solutions when the Cauchy data are regular, t ∈ R, x ∈ R5.
Si dà una condizione sufficiente per la esistenza di una soluzione in uno spazio di Gevrey , razionale , , di una equazione lineare a derivate parziali a coefficienti costanti , quando . La dimostrazione completa dei risultati ottenuti è contenuta in una nota dell’autore in corso di pubblicazione su "Astérisque".
In this paper are examined some classes of linear and non-linear analytical systems of partial differential equations. Compatibility conditions are found and if they are satisfied, the solutions are given as functional series in a neighborhood of a given point (x = 0).
In this paper a class of polynomially generalized Vekua–type equations and of polynomially generalized Bers–Vekua equations with variable coefficients defined in a domain of Euclidean space are discussed. Using the methods of Clifford analysis, first the Fischer–type decomposition theorems for null solutions to these equations are obtained. Then we give, under some conditions, the solutions to the polynomially generalized Bers–Vekua equation with variable coefficients. Finally, we present the structure...
A nonlinear equation in 2 variables is considered. A formal solution as a series of Laplace integrals is constructed. It is shown that assuming some properties of Char P, one gets the Gevrey class of such solutions. In some cases convergence “at infinity” is proved.
This survey is devoted to some fractional extensions of the incomplete lumped formulation, the lumped formulation and the formulation of Lauwerier of the temperature field problem in oil strata. The method of integral transforms is used to solve the corresponding boundary value problems for the fractional heat equation. By using Caputo’s differintegration operator and the Laplace transform, new integral forms of the solutions are obtained. In each of the different cases the integrands are expressed...
The paper discusses some aspects of the adjoint definition of two-scale convergence based on periodic unfolding. As is known this approach removes problems concerning choice of the appropriate space for admissible test functions. The paper proposes a modified unfolding which conserves integral of the unfolded function and hence simplifies the proofs and its application in homogenization theory. The article provides also a self-contained introduction to two-scale convergence and gives ideas for generalization...
In this paper we obtain all solutions which depend only on for a class of partial differential equations of higher order with singular coefficients.