Displaying 41 – 60 of 67

Showing per page

Some sums of Legendre and Jacobi polynomials

Jan Gustavsson (2001)

Mathematica Bohemica

We prove identities involving sums of Legendre and Jacobi polynomials. The identities are related to Green’s functions for powers of the invariant Laplacian and to the Minakshisundaram-Pleijel zeta function.

Spectral projection, residue of the scattering amplitude and Schrödinger group expansion for barrier-top resonances

Jean-François Bony, Setsuro Fujiié, Thierry Ramond, Maher Zerzeri (2011)

Annales de l’institut Fourier

We study the spectral projection associated to a barrier-top resonance for the semiclassical Schrödinger operator. First, we prove a resolvent estimate for complex energies close to such a resonance. Using that estimate and an explicit representation of the resonant states, we show that the spectral projection has a semiclassical expansion in integer powers of h , and compute its leading term. We use this result to compute the residue of the scattering amplitude at such a resonance. Eventually, we...

Stabilité des solitons de l’équation de Landau-Lifshitz à anisotropie planaire

André de Laire, Philippe Gravejat (2014/2015)

Séminaire Laurent Schwartz — EDP et applications

Cet exposé présente plusieurs résultats récents quant à la stabilité des solitons sombres de l’équation de Landau-Lifshitz à anisotropie planaire, en particulier, quant à la stabilité orbitale des trains (bien préparés) de solitons gris [16] et à la stabilité asymptotique de ces mêmes solitons [2].

Stability of periodic stationary solutions of scalar conservation laws with space-periodic flux

Anne-Laure Dalibard (2011)

Journal of the European Mathematical Society

This article investigates the long-time behaviour of parabolic scalar conservation laws of the type t u + div y A ( y , u ) - Δ y u = 0 , where y N and the flux A is periodic in y . More specifically, we consider the case when the initial data is an L 1 disturbance of a stationary periodic solution. We show, under polynomial growth assumptions on the flux, that the difference between u and the stationary solution behaves in L 1 norm like a self-similar profile for large times. The proof uses a time and space change of variables which is...

Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills Problems

Pierre Raphaël, Igor Rodnianski (2008/2009)

Séminaire Équations aux dérivées partielles

This note summarizes the results obtained in [30]. We exhibit stable finite time blow up regimes for the energy critical co-rotational Wave Map with the 𝕊 2 target in all homotopy classes and for the equivariant critical S O ( 4 ) Yang-Mills problem. We derive sharp asymptotics on the dynamics at blow up time and prove quantization of the energy focused at the singularity.

Currently displaying 41 – 60 of 67