Displaying 141 – 160 of 190

Showing per page

Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in N

Caisheng Chen, Hongxue Song (2016)

Applications of Mathematics

In this work, we study the existence of nonnegative and nontrivial solutions for the quasilinear Schrödinger equation - Δ N u + b | u | N - 2 u - Δ N ( u 2 ) u = h ( u ) , x N , where Δ N is the N -Laplacian operator, h ( u ) is continuous and behaves as exp ( α | u | N / ( N - 1 ) ) when | u | . Using the Nehari manifold method and the Schwarz symmetrization with some special techniques, the existence of a nonnegative and nontrivial solution u ( x ) W 1 , N ( N ) with u ( x ) 0 as | x | is established.

Solvability of a class of phase field systems related to a sliding mode control problem

Michele Colturato (2016)

Applications of Mathematics

We consider a phase-field system of Caginalp type perturbed by the presence of an additional maximal monotone nonlinearity. Such a system arises from a recent study of a sliding mode control problem. We prove the existence of strong solutions. Moreover, under further assumptions, we show the continuous dependence on the initial data and the uniqueness of the solution.

Solvability of the Poisson equation in weighted Sobolev spaces

Wojciech M. Zajączkowski (2010)

Applicationes Mathematicae

The aim of this paper is to prove the existence of solutions to the Poisson equation in weighted Sobolev spaces, where the weight is the distance to some distinguished axis, raised to a negative power. Therefore we are looking for solutions which vanish sufficiently fast near the axis. Such a result is useful in the proof of the existence of global regular solutions to the Navier-Stokes equations which are close to axially symmetric solutions.

Some Remarks on the Boundary Conditions in the Theory of Navier-Stokes Equations

Chérif Amrouche, Patrick Penel, Nour Seloula (2013)

Annales mathématiques Blaise Pascal

This article addresses some theoretical questions related to the choice of boundary conditions, which are essential for modelling and numerical computing in mathematical fluids mechanics. Unlike the standard choice of the well known non slip boundary conditions, we emphasize three selected sets of slip conditions, and particularly stress on the interaction between the appropriate functional setting and the status of these conditions.

Some results on strongly nonlinear anisotropic differential equations

L. Bougoffa, A. El Khalil, S. El Manouni (2010)

Applicationes Mathematicae

The paper concerns the existence of weak solutions to nonlinear elliptic equations of the form A(u) + g(x,u,∇u) = f, where A is an operator from an appropriate anisotropic function space to its dual and the right hand side term is in L 1 + m with 0 < m < 1. We assume a sign condition on the nonlinear term g, but no growth restrictions on u.

Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems

Sachiko Ishida, Tomomi Yokota (2023)

Archivum Mathematicum

This paper presents a stabilization result for weak solutions of degenerate parabolic equations in divergence form. More precisely, the result asserts that the global-in-time weak solution converges to the average of the initial data in some topology as time goes to infinity. It is also shown that the result can be applied to a degenerate parabolic-elliptic Keller-Segel system.

Sur la théorie globale des équations de Navier-Stokes compressible

Didier Bresch, Benoît Desjardins (2006)

Journées Équations aux dérivées partielles

Le but de cet article est de présenter quelques résultats mathématiques plus ou moins récents sur la théorie de l’existence globale en temps (solutions faibles et solutions fortes) pour les équations de Navier-Stokes compressibles en dimension supérieure ou égale à deux sans aucune hypothèse de symétrie sur le domaine et sans aucune hypothèse sur la taille des données initiales.

Currently displaying 141 – 160 of 190