Global analytic and Gevrey surjectivity of the Mizohata operator
The surjectivity of the operator from the Gevrey space , , onto itself and its non-surjectivity from to is proved.
The surjectivity of the operator from the Gevrey space , , onto itself and its non-surjectivity from to is proved.
In this paper, we study the homogenization and localization of a spectral transport equation posed in a locally periodic heterogeneous domain. This equation models the equilibrium of particles interacting with an underlying medium in the presence of a creation mechanism such as, for instance, neutrons in nuclear reactors. The physical coefficients of the domain are -periodic functions modulated by a macroscopic variable, where is a small parameter. The mean free path of the particles is also...
In this paper, we study the homogenization and localization of a spectral transport equation posed in a locally periodic heterogeneous domain. This equation models the equilibrium of particles interacting with an underlying medium in the presence of a creation mechanism such as, for instance, neutrons in nuclear reactors. The physical coefficients of the domain are ε-periodic functions modulated by a macroscopic variable, where ε is a small parameter. The mean free path of the particles...
This paper deals with the homogenization of a spectral equation posed in a periodic domain in linear transport theory. The particle density at equilibrium is given by the unique normalized positive eigenvector of this spectral equation. The corresponding eigenvalue indicates the amount of particle creation necessary to reach this equilibrium. When the physical parameters satisfy some symmetry conditions, it is known that the eigenvectors of this equation can be approximated by the product of two...
This paper deals with the homogenization of a spectral equation posed in a periodic domain in linear transport theory. The particle density at equilibrium is given by the unique normalized positive eigenvector of this spectral equation. The corresponding eigenvalue indicates the amount of particle creation necessary to reach this equilibrium. When the physical parameters satisfy some symmetry conditions, it is known that the eigenvectors of this equation can be approximated by the product...