On the singularities of the solution of the Cauchy problem for the operator with non uniform multiple characteristics
Let E be a Banach space. We consider a Cauchy problem of the type ⎧ in , ⎨ ⎩ in , j=0,...,k-1, where each is a given continuous linear operator from E into itself. We prove that if the operators are nilpotent and pairwise commuting, then the problem is well-posed in the space of all functions whose derivatives are equi-bounded on each bounded subset of .
This paper is concerned with periodic solutions for perturbations of the sweeping process introduced by J.J. Moreau in 1971. The perturbed equation has the form where C is a T-periodic multifunction from [0,T] into the set of nonempty convex weakly compact subsets of a separable Hilbert space H, is the normal cone of C(t) at u(t), f:[0,T] × H∪H is a Carathéodory function and Du is the differential measure of the periodic BV solution u. Several existence results of periodic solutions for this...
Nous donnons, dans un cadre très général, des critères de résolubilité pour un certain type de problèmes de Cauchy, et des résultats (entre autres, de compacité) concernant les opérateurs associés à leur résolution. Puis nous considérons les perturbations singulières du type “changement de temps”, et obtenons des conditions suffisantes, et des critères nécessaires et suffisants (modulo prolongement, au besoin) de résolubilité pour le problème de Cauchy perturbé (perturbation d’un problème résoluble)....