Calcul symbolique et singularités des solutions des équations aux dérivées partielles non linéaires
On considère une solution , assez régulière, d’une équation aux dérivées partielles non linéaire. Si est conormale par rapport a une hypersurface simplement caractéristique pour l’équation linéarisée, on étudie l’équation de transport satisfaite par son symbole principal, et on en déduit la propagation de la propriété “ est conormale classique”.
Let be a linear partial differential operator with holomorphic coefficients, whereandWe consider Cauchy problem with holomorphic dataWe can easily get a formal solution , bu in general it diverges. We show under some conditions that for any sector with the opening less that a constant determined by , there is a function holomorphic except on such that and as in .