Page 1

Displaying 1 – 3 of 3

Showing per page

Bi-spaces global attractors in abstract parabolic equations

J. W. Cholewa, T. Dłotko (2003)

Banach Center Publications

An abstract semilinear parabolic equation in a Banach space X is considered. Under general assumptions on nonlinearity this problem is shown to generate a bounded dissipative semigroup on X α . This semigroup possesses an ( X α - Z ) -global attractor that is closed, bounded, invariant in X α , and attracts bounded subsets of X α in a ’weaker’ topology of an auxiliary Banach space Z. The abstract approach is finally applied to the scalar parabolic equation in Rⁿ and to the partly dissipative system.

Blow up for a completely coupled Fujita type reaction-diffusion system

Noureddine Igbida, Mokhtar Kirane (2002)

Colloquium Mathematicae

This paper provides blow up results of Fujita type for a reaction-diffusion system of 3 equations in the form u - Δ ( a 11 u ) = h ( t , x ) | v | p , v - Δ ( a 21 u ) - Δ ( a 22 v ) = k ( t , x ) | w | q , w - Δ ( a 31 u ) - Δ ( a 32 v ) - Δ ( a 33 w ) = l ( t , x ) | u | r , for x N , t > 0, p > 0, q > 0, r > 0, a i j = a i j ( t , x , u , v ) , under initial conditions u(0,x) = u₀(x), v(0,x) = v₀(x), w(0,x) = w₀(x) for x N , where u₀, v₀, w₀ are nonnegative, continuous and bounded functions. Subject to conditions on dependence on the parameters p, q, r, N and the growth of the functions h, k, l at infinity, we prove finite blow up time for every solution of the above system,...

Blow up, global existence and growth rate estimates in nonlinear parabolic systems

Joanna Rencławowicz (2000)

Colloquium Mathematicae

We prove Fujita-type global existence and nonexistence theorems for a system of m equations (m > 1) with different diffusion coefficients, i.e. u i t - d i Δ u i = k = 1 m u k p k i , i = 1 , . . . , m , x N , t > 0 , with nonnegative, bounded, continuous initial values and p k i 0 , i , k = 1 , . . . , m , d i > 0 , i = 1 , . . . , m . For solutions which blow up at t = T < , we derive the following bounds on the blow up rate: u i ( x , t ) C ( T - t ) - α i with C > 0 and α i defined in terms of p k i .

Currently displaying 1 – 3 of 3

Page 1