Page 1

Displaying 1 – 10 of 10

Showing per page

A generalization of the Keller-Segel system to higher dimensions from a structural viewpoint

Fujie, Kentarou, Senba, Takasi (2017)

Proceedings of Equadiff 14

We consider initial boundary problems of a two-chemical substances chemotaxis system. In the four-dimensional setting, it was shown that solutions exist globally in time and remain bounded if the total mass is less than ( 8 π ) 2 , whereas the solution emanating from some initial data of large magnitude may blows up. This result can be regarded as a generalization of the well-known 8 π problem in the Keller–Segel system to higher dimensions. We will compare mathematical structures of the Keller–Segel system...

A note on the paper of Y. Naito

Piotr Biler (2006)

Banach Center Publications

This note contains some remarks on the paper of Y. Naito concerning the parabolic system of chemotaxis and published in this volume.

A parabolic system involving a quadratic gradient term related to the Boussinesq approximation.

Jesús Ildefonso Díaz, Jean-Michel Rakotoson, Paul G. Schmidt (2007)

RACSAM

We propose a modification of the classical Boussinesq approximation for buoyancy-driven flows of viscous, incompressible fluids in situations where viscous heating cannot be neglected. This modification is motivated by unresolved issues regarding the global solvability of the original system. A very simple model problem leads to a coupled system of two parabolic equations with a source term involving the square of the gradient of one of the unknowns. Based on adequate notions of weak and strong...

A phase-field model of grain boundary motion

Akio Ito, Nobuyuki Kenmochi, Noriaki Yamazaki (2008)

Applications of Mathematics

We consider a phase-field model of grain structure evolution, which appears in materials sciences. In this paper we study the grain boundary motion model of Kobayashi-Warren-Carter type, which contains a singular diffusivity. The main objective of this paper is to show the existence of solutions in a generalized sense. Moreover, we show the uniqueness of solutions for the model in one-dimensional space.

A Spatial Model of Tumor Growth with Cell Age, Cell Size, and Mutation of Cell Phenotypes

J. Dyson, R. Villella-Bressan, G. Webb (2010)

Mathematical Modelling of Natural Phenomena

A model of tumor growth in a spatial environment is analyzed. The model includes proliferating and quiescent compartments of tumor cells indexed by successively mutated cell phenotypes of increasingly proliferative aggressiveness. The model incorporates spatial dependence due to both random motility and directed movement haptotaxis. The model structures tumor cells by both cell age and cell size. The model consists of a system of nonlinear partial differential equations for the compartments of...

Asymptotic stability of stationary solutions to the drift-diffusion model in the whole space

Ryo Kobayashi, Masakazu Yamamoto, Shuichi Kawashima (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We study the initial value problem for the drift-diffusion model arising in semiconductor device simulation and plasma physics. We show that the corresponding stationary problem in the whole space ℝn admits a unique stationary solution in a general situation. Moreover, it is proved that when n ≥ 3, a unique solution to the initial value problem exists globally in time and converges to the corresponding stationary solution as time tends to infinity, provided that the amplitude of the stationary solution...

Asymptotically self-similar solutions for the parabolic system modelling chemotaxis

Yūki Naito (2006)

Banach Center Publications

We consider a nonlinear parabolic system modelling chemotaxis u t = · ( u - u v ) , v t = Δ v + u in ℝ², t > 0. We first prove the existence of time-global solutions, including self-similar solutions, for small initial data, and then show the asymptotically self-similar behavior for a class of general solutions.

Currently displaying 1 – 10 of 10

Page 1