Loading [MathJax]/extensions/MathZoom.js
This paper is concerned with the convective Cahn-Hilliard equation. We use a classical theorem on existence of a global attractor to derive that the convective Cahn-Hilliard equation possesses a global attractor on some subset of H².
We consider the convective Cahn-Hilliard equation with periodic boundary conditions. Based on the iteration technique for regularity estimates and the classical theorem on existence of a global attractor, we prove that the convective Cahn-Hilliard equation has a global attractor in .
We prove the existence of global attractors for the following semilinear degenerate parabolic equation on :
∂u/∂t - div(σ(x)∇ u) + λu + f(x,u) = g(x),
under a new condition concerning the variable nonnegative diffusivity σ(·) and for an arbitrary polynomial growth order of the nonlinearity f. To overcome some difficulties caused by the lack of compactness of the embeddings, these results are proved by combining the tail estimates method and the asymptotic a priori estimate method.
Currently displaying 1 –
4 of
4