Page 1

Displaying 1 – 2 of 2

Showing per page

The analysis of blow-up solutions to a semilinear parabolic system with weighted localized terms

Haihua Lu, Feng Wang, Qiaoyun Jiang (2011)

Annales Polonici Mathematici

This paper deals with blow-up properties of solutions to a semilinear parabolic system with weighted localized terms, subject to the homogeneous Dirichlet boundary conditions. We investigate the influence of the three factors: localized sources u p ( x , t ) , vⁿ(x₀,t), local sources u m ( x , t ) , v q ( x , t ) , and weight functions a(x),b(x), on the asymptotic behavior of solutions. We obtain the uniform blow-up profiles not only for the cases m,q ≤ 1 or m,q > 1, but also for m > 1 q < 1 or m < 1 q > 1.

The dynamics of weakly interacting fronts in an adsorbate-induced phase transition model

Shin-Ichiro Ei, Tohru Tsujikawa (2009)

Kybernetika

Hildebrand et al. (1999) proposed an adsorbate-induced phase transition model. For this model, Takei et al. (2005) found several stationary and evolutionary patterns by numerical simulations. Due to bistability of the system, there appears a phase separation phenomenon and an interface separating these phases. In this paper, we introduce the equation describing the motion of two interfaces in 2 and discuss an application. Moreover, we prove the existence of the traveling front solution which approximates...

Currently displaying 1 – 2 of 2

Page 1