Page 1

Displaying 1 – 4 of 4

Showing per page

P-adaptive Hermite methods for initial value problems∗

Ronald Chen, Thomas Hagstrom (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We study order-adaptive implementations of Hermite methods for hyperbolic and singularly perturbed parabolic initial value problems. Exploiting the facts that Hermite methods allow the degree of the local polynomial representation to vary arbitrarily from cell to cell and that, for hyperbolic problems, each cell can be evolved independently over a time-step determined only by the cell size, a relatively straightforward method is proposed. Its utility is demonstrated on a number of model problems...

P-adaptive Hermite methods for initial value problems

Ronald Chen, Thomas Hagstrom (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study order-adaptive implementations of Hermite methods for hyperbolic and singularly perturbed parabolic initial value problems. Exploiting the facts that Hermite methods allow the degree of the local polynomial representation to vary arbitrarily from cell to cell and that, for hyperbolic problems, each cell can be evolved independently over a time-step determined only by the cell size, a relatively straightforward method is proposed. Its utility is demonstrated on a number of model problems...

P-adaptive Hermite methods for initial value problems∗

Ronald Chen, Thomas Hagstrom (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We study order-adaptive implementations of Hermite methods for hyperbolic and singularly perturbed parabolic initial value problems. Exploiting the facts that Hermite methods allow the degree of the local polynomial representation to vary arbitrarily from cell to cell and that, for hyperbolic problems, each cell can be evolved independently over a time-step determined only by the cell size, a relatively straightforward method is proposed. Its utility is demonstrated on a number of model problems...

Postprocessing of a finite volume element method for semilinear parabolic problems

Min Yang, Chunjia Bi, Jiangguo Liu (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we study a postprocessing procedure for improving accuracy of the finite volume element approximations of semilinear parabolic problems. The procedure amounts to solve a source problem on a coarser grid and then solve a linear elliptic problem on a finer grid after the time evolution is finished. We derive error estimates in the L2 and H1 norms for the standard finite volume element scheme and an improved error estimate in the H1 norm. Numerical results demonstrate the accuracy...

Currently displaying 1 – 4 of 4

Page 1