Page 1

Displaying 1 – 2 of 2

Showing per page

Interior regularity for weak solutions of ultraparabolic equations in divergence form with discontinuous coefficients

Maria Manfredini, Sergio Polidoro (1998)

Bollettino dell'Unione Matematica Italiana

Abbiamo considerato il problema della regolarità interna delle soluzioni deboli della seguente equazione differenziale i , j = 1 m 0 x i a i , j x , t x j u + i , j = 1 N b i , j x i x j u - t u = j = 1 m 0 x j F j x , t , dove x , t R N + 1 , 0 < m 0 N ed F j L loc p R N + 1 per j = 1 , , m 0 . I nostri principali risultati sono una stima a priori interna del tipo j = 1 m 0 x j u p c j = 1 m 0 F j p + u p , e la regolarità hölderiana di u . La stima a priori delle derivate viene ottenuta utilizzando una tecnica analoga a quella introdotta da Chiarenza, Frasca e Longo in [3], per gli operatori ellittici in forma di non divergenza, supponendo che i coefficienti a i , j verifichino una condizione...

Inverse problem for semilinear ultraparabolic equation of higher order

Nataliya Protsakh (2015)

Mathematica Bohemica

We study the existence and the uniqueness of the weak solution of an inverse problem for a semilinear higher order ultraparabolic equation with Lipschitz nonlinearity. The main aim is to determine the weak solution of the equation and some functions that depend on the time variable, appearing on the right-hand side of the equation. The overdetermination conditions introduced are of integral type. In order to prove the solvability of this problem in Sobolev spaces we use the Galerkin method and the...

Currently displaying 1 – 2 of 2

Page 1