The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 281 – 300 of 342

Showing per page

Two separation criteria for second order ordinary or partial differential operators

Richard C. Brown, Don B. Hinton (1999)

Mathematica Bohemica

We generalize a well-known separation condition of Everitt and Giertz to a class of weighted symmetric partial differential operators defined on domains in n . Also, for symmetric second-order ordinary differential operators we show that lim sup t c ( p q ' ) ' / q 2 = θ < 2 where c is a singular point guarantees separation of - ( p y ' ) ' + q y on its minimal domain and extend this criterion to the partial differential setting. As a particular example it is shown that - Δ y + q y is separated on its minimal domain if q is superharmonic. For n = 1 the criterion...

Unique continuation property near a corner and its fluid-structure controllability consequences

Axel Osses, Jean-Pierre Puel (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We study a non standard unique continuation property for the biharmonic spectral problem Δ 2 w = - λ Δ w in a 2D corner with homogeneous Dirichlet boundary conditions and a supplementary third order boundary condition on one side of the corner. We prove that if the corner has an angle 0 &lt; θ 0 &lt; 2 π , θ 0 π and θ 0 3 π / 2 , a unique continuation property holds. Approximate controllability of a 2-D linear fluid-structure problem follows from this property, with a control acting on the elastic side of a corner in a domain containing a Stokes...

Unique continuation property near a corner and its fluid-structure controllability consequences

Axel Osses, Jean-Pierre Puel (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We study a non standard unique continuation property for the biharmonic spectral problem Δ 2 w = - λ Δ w in a 2D corner with homogeneous Dirichlet boundary conditions and a supplementary third order boundary condition on one side of the corner. We prove that if the corner has an angle 0 < θ 0 < 2 π , θ 0 π and θ 0 3 π / 2 , a unique continuation property holds. Approximate controllability of a 2-D linear fluid-structure problem follows from this property, with a control acting on the elastic side of a corner in a domain containing...

Variational characterization of eigenvalues of a non-symmetric eigenvalue problem governing elastoacoustic vibrations

Markus Stammberger, Heinrich Voss (2014)

Applications of Mathematics

Small amplitude vibrations of an elastic structure completely filled by a fluid are considered. Describing the structure by displacements and the fluid by its pressure field one arrives at a non-selfadjoint eigenvalue problem. Taking advantage of a Rayleigh functional we prove that its eigenvalues can be characterized by variational principles of Rayleigh, minmax and maxmin type.

Weighted norm estimates and L p -spectral independence of linear operators

Peer C. Kunstmann, Hendrik Vogt (2007)

Colloquium Mathematicae

We investigate the L p -spectrum of linear operators defined consistently on L p ( Ω ) for p₀ ≤ p ≤ p₁, where (Ω,μ) is an arbitrary σ-finite measure space and 1 ≤ p₀ < p₁ ≤ ∞. We prove p-independence of the L p -spectrum assuming weighted norm estimates. The assumptions are formulated in terms of a measurable semi-metric d on (Ω,μ); the balls with respect to this semi-metric are required to satisfy a subexponential volume growth condition. We show how previous results on L p -spectral independence can be treated...

Currently displaying 281 – 300 of 342