Displaying 21 – 40 of 46

Showing per page

On the existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems.

Jacqueline Fleckinger, Jesús Hernández, François De Thélin (2003)

RACSAM

We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the inverse of the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.

On the generic spectrum of a riemannian cover

Steven Zelditch (1990)

Annales de l'institut Fourier

Let M be a compact manifold let G be a finite group acting freely on M , and let G be the (Fréchet) space of G -invariant metric on M . A natural conjecture is that, for a generic metric in G , all eigenspaces of the Laplacian are irreducible (as orthogonal representations of G ). In physics terminology, no “accidental degeneracies” occur generically. We will prove this conjecture when dim M dim V for all irreducibles V of G . As an application, we construct isospectral manifolds with simple eigenvalue...

On the homogenization of the Poisson equation in partially perforated domains with arbitrary density of cavities and mixed type conditions on their boundary

Olga A. Oleinik, Tatiana A. Shaposhnikova (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we study the behavior of solutions of the boundary value problem for the Poisson equation in a partially perforated domain with arbitrary density of cavities and mixed type conditions on their boundary. The corresponding spectral problem is also considered. A short communication of similar results can be found in [1].

On the nodal set of the second eigenfunction of the laplacian in symmetric domains in R N

Lucio Damascelli (2000)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We present a simple proof of the fact that if Ω is a bounded domain in R N , N 2 , which is convex and symmetric with respect to k orthogonal directions, 1 k N , then the nodal sets of the eigenfunctions of the laplacian corresponding to the eigenvalues λ 2 , , λ k + 1 must intersect the boundary. This result was proved by Payne in the case N = 2 for the second eigenfunction, and by other authors in the case of convex domains in the plane, again for the second eigenfunction.

Currently displaying 21 – 40 of 46