The asymptotics for the number of eigenvalue branches for the magnetic Schrödinger operator H - ? W in a gap of H.
We prove the existence of the density of states of a local, self-adjoint operator determined by a coercive, almost periodic quadratic form on . The support of the density coincides with the spectrum of the operator in .
We study nodal sets for typical eigenfunctions of the Laplacian on the standard torus in dimensions. Making use of the multiplicities in the spectrum of the Laplacian, we put a Gaussian measure on the eigenspaces and use it to average over the eigenspace. We consider a sequence of eigenvalues with growing multiplicity .The quantity that we study is the Leray, or microcanonical, measure of the nodal set. We show that the expected value of the Leray measure of an eigenfunction is constant, equal...
The theory of Markov processes and the analysis on Lie groups are used to study the eigenvalue asymptotics of Dirichlet forms perturbed by scalar potentials.
Let A be a pseudodifferential operator on whose Weyl symbol a is a strictly positive smooth function on such that for some ϱ>0 and all |α|>0, is bounded for large |α|, and . Such an operator A is essentially selfadjoint, bounded from below, and its spectrum is discrete. The remainder term in the Weyl asymptotic formula for the distribution of the eigenvalues of A is estimated. This is done by applying the method of approximate spectral projectors of Tulovskiĭ and Shubin.
We study low lying eigenvalues for non-selfadjoint semiclassical differential operators, where symmetries play an important role. In the case of the Kramers-Fokker-Planck operator, we show how the presence of certain supersymmetric and -symmetric structures leads to precise results concerning the reality and the size of the exponentially small eigenvalues in the semiclassical (here the low temperature) limit. This analysis also applies sometimes to chains of oscillators coupled to two heat baths,...
In this paper we show an asymptotic formula for the number of eigenvalues of a pseudodifferential operator. As a corollary we obtain a generalization of the result by Shubin and Tulovskiĭ about the Weyl asymptotic formula. We also consider a version of the Weyl formula for the quasi-classical asymptotics.