Effets de bord pour un tambour à bord fractal
We study stationary solutions of the damped wave equation on a compact and smooth Riemannian manifold without boundary. In the high frequency limit, we prove that a sequence of -damped stationary solutions cannot be completely concentrated in small neighborhoods of a small fixed hyperbolic subset made of -damped trajectories of the geodesic flow.The article also includes an appendix (by S. Nonnenmacher and the author) where we establish the existence of an inverse logarithmic strip without eigenvalues...
Asymptotics with sharp remainder estimates are recovered for number of eigenvalues of the generalized Maxwell problem and for related Laplacians which are similar to Neumann Laplacian. We consider domains with ultra-thin cusps (with ) width ; ) and recover eigenvalue asymptotics with sharp remainder estimates.
We consider the Pauli operator selfadjoint in , . Here , , are the Pauli matrices, is the magnetic potential, is the coupling constant, and is the electric potential which decays at infinity. We suppose that the magnetic field generated by satisfies some regularity conditions; in particular, its norm is lower-bounded by a positive constant, and, in the case , its direction is constant. We investigate the asymptotic behaviour as of the number of the eigenvalues of smaller than...
For a class of non-selfadjoint –pseudodifferential operators with double characteristics, we give a precise description of the spectrum and establish accurate semiclassical resolvent estimates in a neighborhood of the origin. Specifically, assuming that the quadratic approximations of the principal symbol of the operator along the double characteristics enjoy a partial ellipticity property along a suitable subspace of the phase space, namely their singular space, we give a precise description of...
For the Dirichlet Laplacian in the exterior of a strictly convex obstacle, we show that the number of scattering poles of modulus in a small angle near the real axis, can be estimated by Const for sufficiently large depending on . Here is the dimension.