Displaying 21 – 40 of 122

Showing per page

Eigenvalue problems of quasilinear elliptic systems on Rn.

Gong Bao Li (1987)

Revista Matemática Iberoamericana

In this paper we get the existence results of the nontrivial weak solution (λ,u) of the following eigenvalue problem of quasilinear elliptic systems-Dα (aαβ(x,u) Dβui) + 1/2 Dui aαβ(x,u)Dαuj Dβuj + h(x) ui = λ|u|p-2ui,   for x ∈ Rn, 1 ≤ i ≤ N and u = (u1, u2, ..., uN) ∈ E = {v = (v1, v2, ..., vN) | vi ∈ H1(Rn), 1 ≤ i ≤ N},where aαβ(x,u) satisfy the natural growth conditions. It seems that this kind of problem has never been dealt with before.

Eigenvalue problems with indefinite weight

Andrzej Szulkin, Michel Willem (1999)

Studia Mathematica

We consider the linear eigenvalue problem -Δu = λV(x)u, u D 0 1 , 2 ( Ω ) , and its nonlinear generalization - Δ p u = λ V ( x ) | u | p - 2 u , u D 0 1 , p ( Ω ) . The set Ω need not be bounded, in particular, Ω = N is admitted. The weight function V may change sign and may have singular points. We show that there exists a sequence of eigenvalues λ n .

Currently displaying 21 – 40 of 122