Scattering theory in the weighted spaces for some Schrödinger equations
We present here a simplified version of results obtained with F. Alouges, M. Dauge, B. Helffer and G. Vial (cf [4, 7, 9]). We analyze the Schrödinger operator with magnetic field in an infinite sector. This study allows to determine accurate approximation of the low-lying eigenpairs of the Schrödinger operator in domains with corners. We complete this analysis with numerical experiments.
We consider a version of the Weyl formula describing the asymptotic behaviour of the counting function of eigenvalues in the semiclassical approximation for self-adjoint elliptic differential operators under weak regularity hypotheses. Our aim is to treat Hölder continuous coefficients and to investigate the case of critical energy values as well.