Displaying 41 – 60 of 161

Showing per page

On non-overdetermined inverse scattering at zero energy in three dimensions

Roman G. Novikov (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We develop the ¯ -approach to inverse scattering at zero energy in dimensions d 3 of [Beals, Coifman 1985], [Henkin, Novikov 1987] and [Novikov 2002]. As a result we give, in particular, uniqueness theorem, precise reconstruction procedure, stability estimate and approximate reconstruction for the problem of finding a sufficiently small potential v in the Schrödinger equation from a fixed non-overdetermined (“backscattering” type) restriction h | Γ of the Faddeev generalized scattering amplitude h in the...

On solutions of the Schrödinger equation with radiation conditions at infinity : the long-range case

Yannick Gâtel, Dimitri Yafaev (1999)

Annales de l'institut Fourier

We consider the homogeneous Schrödinger equation with a long-range potential and show that its solutions satisfying some a priori bound at infinity can asymptotically be expressed as a sum of incoming and outgoing distorted spherical waves. Coefficients of these waves are related by the scattering matrix. This generalizes a similar result obtained earlier in the short-range case.

On some elliptic transmission problems

Christodoulos Athanasiadis, Ioannis G. Stratis (1996)

Annales Polonici Mathematici

Boundary value problems for second order linear elliptic equations with coefficients having discontinuities of the first kind on an infinite number of smooth surfaces are studied. Existence, uniqueness and regularity results are furnished for the diffraction problem in such a bounded domain, and for the corresponding transmission problem in all of N . The transmission problem corresponding to the scattering of acoustic plane waves by an infinitely stratified scatterer, consisting of layers with physically...

On some new spectral estimates for Schrödinger-like operators

Daniel Levin (2006)

Open Mathematics

We prove the analog of the Cwikel-Lieb-Rozenblum estimate for a wide class of second-order elliptic operators by two different tools: Lieb-Thirring inequalities for Schrödinger operators with matrix-valued potentials and Sobolev inequalities for warped product spaces.

On some nonlinear partial differential equations involving the 1-Laplacian

Mouna Kraïem (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

Let Ω be a smooth bounded domain in N , N > 1 and let n * . We prove here the existence of nonnegative solutions u n in B V ( Ω ) , to the problem ( P n ) - div σ + 2 n Ω u - 1 sign + ( u ) = 0 in Ω , σ · u = | u | in Ω , u is not identically zero , - σ · n u = u on Ω , where n denotes the unit outer normal to Ω , and sign + ( u ) denotes some L ( Ω ) function defined as: sign + ( u ) . u = u + , 0 sign + ( u ) 1 . Moreover, we prove the tight convergence of u n towards one of the first eingenfunctions for the first 1 - Laplacian Operator - Δ 1 on Ω when n goes to + .

Currently displaying 41 – 60 of 161