Displaying 1201 – 1220 of 1562

Showing per page

The gaps in the spectrum of the Schrödinger operator

Haizhong Li, Linlin Su (2005)

Banach Center Publications

We obtain inequalities between the eigenvalues of the Schrödinger operator on a compact domain Ω of a submanifold M in R N with boundary ∂Ω, which generalize many existing inequalities for the Laplacian on a bounded domain of a Euclidean space. We also establish similar inequalities for a closed minimal submanifold in the unit sphere, which generalize and improve Yang-Yau’s result.

The Lane-Emden Function and Nonlinear Eigenvalues Problems

Ould Ahmed Izid Bih Isselkou (2009)

Annales de la faculté des sciences de Toulouse Mathématiques

We consider a semilinear elliptic eigenvalues problem on a ball of n and show that all the eigenfunctions and eigenvalues, can be obtained from the Lane-Emden function.

The Laplace-Beltrami operator in almost-Riemannian Geometry

Ugo Boscain, Camille Laurent (2013)

Annales de l’institut Fourier

We study the Laplace-Beltrami operator of generalized Riemannian structures on orientable surfaces for which a local orthonormal frame is given by a pair of vector fields that can become collinear.Under the assumption that the structure is 2-step Lie bracket generating, we prove that the Laplace-Beltrami operator is essentially self-adjoint and has discrete spectrum. As a consequence, a quantum particle cannot cross the singular set (i.e., the set where the vector fields become collinear) and the...

Currently displaying 1201 – 1220 of 1562