Displaying 1241 – 1260 of 1562

Showing per page

The radiation field is a Fourier integral operator

Antônio Sá Barreto, Jared Wunsch (2005)

Annales de l’institut Fourier

We show that the ``radiation field'' introduced by F.G. Friedlander, mapping Cauchy data for the wave equation to the rescaled asymptotic behavior of the wave, is a Fourier integral operator on any non-trapping asymptotically hyperbolic or asymptotically conic manifold. The underlying canonical relation is associated to a ``sojourn time'' or ``Busemann function'' for geodesics. As a consequence we obtain some information about the high frequency behavior of the scattering...

The resolvent for Laplace-type operators on asymptotically conic spaces

Andrew Hassell, András Vasy (2001)

Annales de l’institut Fourier

Let X be a compact manifold with boundary, and g a scattering metric on X , which may be either of short range or “gravitational” long range type. Thus, g gives X the geometric structure of a complete manifold with an asymptotically conic end. Let H be an operator of the form H = Δ + P , where Δ is the Laplacian with respect to g and P is a self-adjoint first order scattering differential operator with coefficients vanishing at X and satisfying a “gravitational” condition. We define a symbol calculus for...

The speed of propagation for KPP type problems. I: Periodic framework

Henry Berestycki, François Hamel, Nikolai Nadirashvili (2005)

Journal of the European Mathematical Society

This paper is devoted to some nonlinear propagation phenomena in periodic and more general domains, for reaction-diffusion equations with Kolmogorov–Petrovsky–Piskunov (KPP) type nonlinearities. The case of periodic domains with periodic underlying excitable media is a follow-up of the article [7]. It is proved that the minimal speed of pulsating fronts is given by a variational formula involving linear eigenvalue problems. Some consequences concerning the influence of the geometry of the domain,...

Currently displaying 1241 – 1260 of 1562