Page 1

Displaying 1 – 2 of 2

Showing per page

The nonlinear future stability of the FLRW family of solutions to the irrotational Euler-Einstein system with a positive cosmological constant

Igor Rodnianski, Jared Speck (2013)

Journal of the European Mathematical Society

In this article, we study small perturbations of the family of Friedmann-Lemaître-Robertson-Walker cosmological background solutions to the coupled Euler-Einstein system with a positive cosmological constant in 1 + 3 spacetime dimensions. The background solutions model an initially uniform quiet fluid of positive energy density evolving in a spacetime undergoing exponentially accelerated expansion. Our nonlinear analysis shows that under the equation of state p = c 2 ρ , 0 < c 2 < 1 / 3 , the background metric + fluid solutions...

The null condition and global existence for nonlinear wave equations on slowly rotating Kerr spacetimes

Jonathan Luk (2013)

Journal of the European Mathematical Society

We study a semilinear equation with derivatives satisfying a null condition on slowly rotating Kerr spacetimes. We prove that given sufficiently small initial data, the solution exists globally in time and decays with a quantitative rate to the trivial solution. The proof uses the robust vector field method. It makes use of the decay properties of the linear wave equation on Kerr spacetime, in particular the improved decay rates in the region { r t 4 } .

Currently displaying 1 – 2 of 2

Page 1