Displaying 241 – 260 of 419

Showing per page

On a volume constrained variational problem in SBV 2 ( Ω ) : part I

Ana Cristina Barroso, José Matias (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the problem of minimizing the energy E ( u ) : = Ω | u ( x ) | 2 d x + S u Ω 1 + | [ u ] ( x ) | d H N - 1 ( x ) among all functions u S B V 2 ( Ω ) for which two level sets { u = l i } have prescribed Lebesgue measure α i . Subject to this volume constraint the existence of minimizers for E ( · ) is proved and the asymptotic behaviour of the solutions is investigated.

On a Volume Constrained Variational Problem in SBV²(Ω): Part I

Ana Cristina Barroso, José Matias (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the problem of minimizing the energy E ( u ) : = Ω | u ( x ) | 2 d x + S u Ω 1 + | [ u ] ( x ) | d H N - 1 ( x ) among all functions u ∈ SBV²(Ω) for which two level sets { u = l i } have prescribed Lebesgue measure α i . Subject to this volume constraint the existence of minimizers for E(.) is proved and the asymptotic behaviour of the solutions is investigated.

On local motion of a compressible barotropic viscous fluid bounded by a free surface

W. Zajączkowski (1992)

Banach Center Publications

We consider the motion of a viscous compressible barotropic fluid in ℝ³ bounded by a free surface which is under constant exterior pressure, both with surface tension and without it. In the first case we prove local existence of solutions in anisotropic Hilbert spaces with noninteger derivatives. In the case without surface tension the anisotropic Sobolev spaces with integration exponent p > 3 are used to omit the coefficients which are increasing functions of 1/T, where T is the existence time....

On nonstationary motion of a fixed mass of a general fluid bounded by a free surface

Ewa Zadrzyńska, Wojciech M. Zajączkowski (2003)

Banach Center Publications

In the paper the motion of a fixed mass of a viscous compressible heat conducting fluid is considered. Assuming that the initial data are sufficiently close to an equilibrium state and the external force, the heat sources and the heat flow through the boundary vanish, we prove the existence of a global in time solution which is close to the equilibrium state for any moment of time.

On nonstationary motion of a fixed mass of a general viscous compressible heat conducting capillary fluid bounded by a free boundary

Ewa Zadrzyńska (1999)

Applicationes Mathematicae

The motion of a fixed mass of a viscous compressible heat conducting capillary fluid is examined. Assuming that the initial data are sufficiently close to a constant state and the external force vanishes we prove the existence of a global-in-time solution which is close to the constant state for any moment of time. Moreover, we present an analogous result for the case of a barotropic viscous compressible fluid.

Currently displaying 241 – 260 of 419