Loading [MathJax]/extensions/MathZoom.js
We study the shape of stationary surfaces with prescribed mean curvature in the Euclidean 3-space near boundary points where Plateau boundaries meet free boundaries. In deriving asymptotic expansions at such points, we generalize known results about minimal surfaces due to G. Dziuk. The main difficulties arise from the fact that, contrary to minimal surfaces, surfaces with prescribed mean curvature do not meet the support manifold perpendicularly along their free boundary, in general.
Consider a parabolic equation which is degenerate on the boundary. By the degeneracy, to assure the well-posedness of the solutions, only a partial boundary condition is generally necessary. When 1 ≤ α < p – 1, the existence of the local BV solution is proved. By choosing some kinds of test functions, the stability of the solutions based on a partial boundary condition is established.
We study the relation between the porous medium equation ut = Δ(um), m > 1, and the eikonal equation vt = |Dv|2. Under quite general assumtions, we prove that the pressure and the interface of the solution of the Cauchy problem for the porous medium equation converge as m↓1 to the viscosity solution and the interface of the Cauchy problem for the eikonal equation. We also address the same questions for the case of the Dirichlet boundary value problem.
Currently displaying 1 –
20 of
27