On exact solutions of one-dimensional diffusion problems with free boundaries for parabolic equations.
We consider the motion of a viscous compressible barotropic fluid in ℝ³ bounded by a free surface which is under constant exterior pressure, both with surface tension and without it. In the first case we prove local existence of solutions in anisotropic Hilbert spaces with noninteger derivatives. In the case without surface tension the anisotropic Sobolev spaces with integration exponent p > 3 are used to omit the coefficients which are increasing functions of 1/T, where T is the existence time....
The motion of a viscous compressible heat conducting fluid in a domain in ℝ³ bounded by a free surface is considered. We prove local existence and uniqueness of solutions in Sobolev-Slobodetskiĭ spaces in two cases: with surface tension and without it.
In the paper the motion of a fixed mass of a viscous compressible heat conducting fluid is considered. Assuming that the initial data are sufficiently close to an equilibrium state and the external force, the heat sources and the heat flow through the boundary vanish, we prove the existence of a global in time solution which is close to the equilibrium state for any moment of time.
The motion of a fixed mass of a viscous compressible heat conducting capillary fluid is examined. Assuming that the initial data are sufficiently close to a constant state and the external force vanishes we prove the existence of a global-in-time solution which is close to the constant state for any moment of time. Moreover, we present an analogous result for the case of a barotropic viscous compressible fluid.
We derive inequalities for a local solution of a free boundary problem for a viscous compressible heat-conducting capillary fluid. The inequalities are crucial in proving the global existence of solutions belonging to certain anisotropic Sobolev-Slobodetskii space and close to an equilibrium state.