The search session has expired. Please query the service again.
In this paper we are interested in bilateral obstacle problems for quasilinear scalar conservation laws associated with Dirichlet boundary conditions. Firstly, we provide a suitable entropy formulation which ensures uniqueness. Then, we justify the existence of a solution through the method of penalization and by referring to the notion of entropy process solution due to specific properties of bounded sequences in . Lastly, we study the behaviour of this solution and its stability properties with...
In this paper we are interested in bilateral obstacle problems for quasilinear scalar conservation laws associated with Dirichlet
boundary conditions. Firstly, we provide a suitable entropy formulation which ensures uniqueness. Then, we justify the existence
of a solution through the method of penalization and by referring to the notion of entropy process solution due to specific
properties of bounded sequences in L∞. Lastly, we study the behaviour of this solution and its stability properties...
A Bernoulli free boundary problem with geometrical constraints is studied. The domain Ω is constrained to lie in the half space determined by x1 ≥ 0 and its boundary to contain a segment of the hyperplane {x1 = 0} where non-homogeneous Dirichlet conditions are imposed. We are then looking for the solution of a partial differential equation satisfying a Dirichlet and a Neumann boundary condition simultaneously on the free boundary. The existence and uniqueness of a solution have already been addressed...
We derive a global differential inequality for solutions of a free boundary problem for a viscous compressible heat concluding capillary fluid. The inequality is essential in proving the global existence of solutions.
We derive a global differential inequality for solutions of a free boundary problem for a viscous compressible heat conducting fluid. The inequality is essential in proving the global existence of solutions.
In this paper we establish a Liouville type theorem for fully nonlinear elliptic equations related to a conjecture of De Giorgi in . We prove that if the level lines of a solution have bounded curvature, then these level lines are straight lines. As a consequence, the solution is one-dimensional. The method also provides a result on free boundary problems of Serrin type.
We consider a mathematical model proposed in [1] for the cristallization of polymers, describing the evolution of temperature, crystalline volume fraction, number and average size of crystals. The model includes a constraint on the crystal volume fraction. Essentially, the model is a system of both second order and first order evolutionary partial differential equations with nonlinear terms which are Lipschitz continuous, as in [1], or Hölder continuous, as in [3]. The main novelty here is the...
The existence of a weak solution of a non-stationary free boundary transmission problem arising in the production of industrial materials is established. The process is governed by a coupled system involving the Navier--Stokes equations and a non-linear heat equation. The stationary case was studied in [7].
Some new mathematical results of existence and uniqueness of solutions are obtained for a class of quasi-variational inequalities modeling the free boundary problem for the determination of the depletion zone in reverse biased semiconductor diodes. The corresponding one (or two) obstacle implicit problems are solved by direct methods with weak regularity estimates for mixed boundary value elliptic problems of second order.
We consider the problem of minimizing the energyamong all functions for which two level sets have prescribed Lebesgue measure . Subject to this volume constraint the existence of minimizers for is proved and the asymptotic behaviour of the solutions is investigated.
We consider the problem of minimizing the energy
among all functions u ∈ SBV²(Ω) for which two level sets
have prescribed Lebesgue measure . Subject to this volume constraint
the existence of minimizers for E(.) is proved and the asymptotic
behaviour of the solutions is investigated.
We derive an inequality for a local solution of a free boundary problem for a viscous compressible heat-conducting capillary fluid. This inequality is crucial to proving the global existence of solutions belonging to certain anisotropic Sobolev-Slobodetskiĭ spaces and close to an equilibrium state.
Currently displaying 1 –
20 of
74