Displaying 61 – 80 of 419

Showing per page

Almost global solutions of the free boundary problem for the equations of a magnetohydrodynamic incompressible fluid

Piotr Kacprzyk (2004)

Applicationes Mathematicae

Almost global in time existence of solutions for equations describing the motion of a magnetohydrodynamic incompressible fluid in a domain bounded by a free surfaced is proved. In the exterior domain we have an electromagnetic field which is generated by some currents which are located on a fixed boundary. We prove that a solution exists for t ∈ (0,T), where T > 0 is large if the data are small.

An existence result for an interior electromagnetic casting problem

Mohammed Barkatou, Diaraf Seck, Idrissa Ly (2006)

Open Mathematics

This paper deals with an interior electromagnetic casting (free boundary) problem. We begin by showing that the associated shape optimization problem has a solution which is of class C 2. Then, using the shape derivative and the maximum principle, we give a sufficient condition that the minimum obtained solves our problem.

An instantaneous semi-Lagrangian approach for boundary control of a melting problem

Youness Mezzan, Moulay Hicham Tber (2021)

Applications of Mathematics

In this paper, a sub-optimal boundary control strategy for a free boundary problem is investigated. The model is described by a non-smooth convection-diffusion equation. The control problem is addressed by an instantaneous strategy based on the characteristics method. The resulting time independent control problems are formulated as function space optimization problems with complementarity constraints. At each time step, the existence of an optimal solution is proved and first-order optimality conditions...

An upper bound on the attractor dimension of a 2D turbulent shear flow with a free boundary condition

Mahdi Boukrouche, Grzegorz Łukaszewicz (2005)

Banach Center Publications

We consider a free boundary problem of a two-dimensional Navier-Stokes shear flow. There exist a unique global in time solution of the considered problem as well as the global attractor for the associated semigroup. As in [1] and [2], we estimate from above the dimension of the attractor in terms of given data and the geometry of the domain of the flow. This research is motivated by a free boundary problem from lubrication theory where the domain of the flow is usually very thin and the roughness...

Analysis of Hamilton-Jacobi-Bellman equations arising in stochastic singular control

Ryan Hynd (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We study the partial differential equation         max{Lu − f, H(Du)} = 0 where u is the unknown function, L is a second-order elliptic operator, f is a given smooth function and H is a convex function. This is a model equation for Hamilton-Jacobi-Bellman equations arising in stochastic singular control. We establish the existence of a unique viscosity solution of the Dirichlet problem that has a Hölder continuous gradient. We also show that if H is uniformly convex, the gradient of this solution...

Analysis of the boundary symbol for the two-phase Navier-Stokes equations with surface tension

Jan Prüss, Gieri Simonett (2009)

Banach Center Publications

The two-phase free boundary value problem for the Navier-Stokes system is considered in a situation where the initial interface is close to a halfplane. We extract the boundary symbol which is crucial for the dynamics of the free boundary and present an analysis of this symbol. Of particular interest are its singularities and zeros which lead to refined mapping properties of the corresponding operator.

Analysis of the free boundary for the p-parabolic variational problem (p ≥ 2).

Henrik Shahgholian (2003)

Revista Matemática Iberoamericana

Abstract Variational inequalities (free boundaries), governed by the p-parabolic equation (p > 2), are the objects of investigation in this paper. Using intrinsic scaling we establish the behavior of solutions near the free boundary. A consequence of this is that the time levels of the free boundary are porous (in N-dimension) and therefore its Hausdorff dimension is less than N. In particular the N-Lebesgue measure of the free boundary is zero for each t-level.

Currently displaying 61 – 80 of 419