Über Differentialgleichungen in n. a. Banachräumen, insbesondere ihre Lösung mittels eines ,, Wegintegrales".
In this paper we investigate the existence of solutions for the initial value problems (IVP for short), for a class of implicit impulsive hyperbolic differential equations by using the lower and upper solutions method combined with Schauder’s fixed point theorem.
This work deals with a non linear inverse problem of reconstructing an unknown boundary γ, the boundary conditions prescribed on γ being of Signorini type, by using boundary measurements. The problem is turned into an optimal shape design one, by constructing a Kohn & Vogelius-like cost function, the only minimum of which is proved to be the unknown boundary. Furthermore, we prove that the derivative of this cost function with respect to a direction θ depends only on the state u0, and not...
On donne une borne supérieur du nombre des valeurs propres négatives de l’opérateur de Schrödinger généralisé, cette borne est donnée en fonction d’un nombre fini de cube dyadiques minimaux.
In this paper we study heat kernels associated with a Carnot group G, endowed with a family of collapsing left-invariant Riemannian metrics σε which converge in the Gromov- Hausdorff sense to a sub-Riemannian structure on G as ε→ 0. The main new contribution are Gaussian-type bounds on the heat kernel for the σε metrics which are stable as ε→0 and extend the previous time-independent estimates in [16]. As an application we study well posedness of the total variation flow of graph surfaces over a...