Exact solutions for nonclassical Stefan problems.
Le but de l’exposé est de donner un guide de lecture pour un article de Gilles Lebeau où il est montré que le problème de Cauchy pour l’équation d’onde surcritique est mal posé au sens de Hadamard dans l’espace d’énergie, pour en dimension 3. La preuve repose sur des constructions d’optique géométrique et des analyses d’instabilité dans des régimes fortement non linéaires. On donnera les étapes de l’analyse en essayant de les situer dans leur contexte plus général : construction de solutions...
This note addresses the Cauchy problem for the gradient flow equation in a Hilbert space
We study eigenvalue problems with discontinuous terms. In particular we consider two problems: a nonlinear problem and a semilinear problem for elliptic equations. In order to study the existence of solutions we replace these two problems with their multivalued approximations and, for the first problem, we estabilish an existence result while for the second problem we prove the existence of multiple nontrivial solutions. The approach used is variational.
Problems of existence and nonexistence of global nontrivial solutions to quasilinear evolution differential inequalities in a product of cones are investigated. The proofs of the nonexistence results are based on the test-function method developed, for the case of the whole space, by Mitidieri, Pohozaev, Tesei and Véron. The existence result is established using the method of supersolutions.
We consider the existence and uniqueness problem for partial differential-functional equations of the first order with the initial condition for which the right-hand side depends on the derivative of unknown function with deviating argument.
We consider the Fourier first initial-boundary value problem for an infinite system of weakly coupled nonlinear differential-functional equations of parabolic type. The right-hand sides of the system are functionals of unknown functions. The existence and uniqueness of the solution are proved by the Banach fixed point theorem.