Inviscid limit for free-surface Navier-Stokes equations
The aim of this talk is to present recent results obtained with N. Masmoudi on the free surface Navier-Stokes equations with small viscosity.
The aim of this talk is to present recent results obtained with N. Masmoudi on the free surface Navier-Stokes equations with small viscosity.
It is proved that one can choose a control function on an arbitrarilly small open subset of the boundary of an obstacle so that the total radiation from this obstacle for a fixed direction of the incident plane wave and for a fixed wave number will be as small as one wishes. The obstacle is called "invisible" in this case.
In this paper, by using an iterative scheme, we advance the main oscillation result of Zhang and Liu (1997). We not only extend this important result but also drop a superfluous condition even in the noniterated case. Moreover, we present some illustrative examples for which the previous results cannot deliver answers for the oscillation of solutions but with our new efficient test, we can give affirmative answers for the oscillatory behaviour of solutions. For a visual explanation of the examples,...
This paper is concerned with iterative methods for parabolic functional differential equations with initial boundary conditions. Monotone iterative methods are discussed. We prove a theorem on the existence of solutions for a parabolic problem whose right-hand side admits a Jordan type decomposition with respect to the function variable. It is shown that there exist Newton sequences which converge to the solution of the initial problem. Differential equations with deviated variables and differential...
On a pseudo-Riemannian manifold we introduce a system of partial differential Killing type equations for spinor-valued differential forms, and study their basic properties. We discuss the relationship between solutions of Killing equations on and parallel fields on the metric cone over for spinor-valued forms.
In this paper we study the Darboux problem in some class of Banach spaces. The right-hand side of this problem is a Pettis-integrable function satisfying some conditions expressed in terms of measures of weak noncompactness. We prove that the set of all local pseudo-solutions of our problem is nonempty, compact and connected in the space of continuous functions equipped with the weak topology.
In this Note we give estimates for the highest order derivatives of an elliptic system in non-divergence form with coefficients in VMO.
We prove an inequality of the typeThis is then used to derive the unique continuation property for the differential inequality under suitable local integrability assumptions on the function .
Sample path large deviations for the laws of the solutions of stochastic nonlinear Schrödinger equations when the noise converges to zero are presented. The noise is a complex additive gaussian noise. It is white in time and colored in space. The solutions may be global or blow-up in finite time, the two cases are distinguished. The results are stated in trajectory spaces endowed with topologies analogue to projective limit topologies. In this setting, the support of the law of the solution is also...