Displaying 801 – 820 of 1901

Showing per page

Large deviations and support results for nonlinear Schrödinger equations with additive noise and applications

Éric Gautier (2010)

ESAIM: Probability and Statistics

Sample path large deviations for the laws of the solutions of stochastic nonlinear Schrödinger equations when the noise converges to zero are presented. The noise is a complex additive Gaussian noise. It is white in time and colored in space. The solutions may be global or blow-up in finite time, the two cases are distinguished. The results are stated in trajectory spaces endowed with topologies analogue to projective limit topologies. In this setting, the support of the law of the solution is...

Lifshitz tails for some non monotonous random models

Frédéric Klopp, Shu Nakamura (2007/2008)

Séminaire Équations aux dérivées partielles

In this talk, we describe some recent results on the Lifshitz behavior of the density of states for non monotonous random models. Non monotonous means that the random operator is not a monotonous function of the random variables. The models we consider will mainly be of alloy type but in some cases we also can apply our methods to random displacement models.

Limite de la solution de ut - ∆um + div F(u) = 0 lorsque m --> ∞.

Philippe Bénilan, Noureddine Igbida (2000)

Revista Matemática Complutense

Dans cette article, on étudie la limite lorsque m --> ∞ de la solution du problème de Cauchy ut - ∆um + div F(u) = 0 sur un ouvert Omega avec des conditions aux bords de type Dirichlet et une donnée initiale u0 ≥ 0.

Linear elliptic equations with BMO coefficients

Menita Carozza, Gioconda Moscariello, Antonia Passarelli di Napoli (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We prove an existence and uniqueness theorem for the Dirichlet problem for the equation div a x u = div f in an open cube Ω R N , when f belongs to some L p Ω , with p close to 2. Here we assume that the coefficient a belongs to the space BMO( Ω ) of functions of bounded mean oscillation and verifies the condition a x λ 0 > 0 for a.e. x Ω .

Linear parabolic problems involving measures.

Herbert Amann (2001)

RACSAM

Desarrollamos una teoría general para la resolución de ecuaciones lineales de evolución de la forma ü + Au = μ sobre R+, donde -A es el generador infinitesimal de un semigrupo analítico fuertemente continuo y μ es una medida de Radón con valores en un espacio de Banach. Utilizamos la teoría de interpolación-extrapolación de espacios y el teorema de representación de Riesz para tales medidas.Los resultados abstractos son ilustrados mediante aplicaciones a problemas de valor inicial parabólicos de...

Lipschitz stability in the determination of the principal part of a parabolic equation

Ganghua Yuan, Masahiro Yamamoto (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Let y ( h ) ( t , x ) be one solution to t y ( t , x ) - i , j = 1 n j ( a i j ( x ) i y ( t , x ) ) = h ( t , x ) , 0 < t < T , x Ω with a non-homogeneous term h , and y | ( 0 , T ) × Ω = 0 , where Ω n is a bounded domain. We discuss an inverse problem of determining n ( n + 1 ) / 2 unknown functions a i j by { ν y ( h ) | ( 0 , T ) × Γ 0 , y ( h ) ( θ , · ) } 1 0 after selecting input sources h 1 , . . . , h 0 suitably, where Γ 0 is an arbitrary subboundary, ν denotes the normal derivative, 0 < θ < T and 0 . In the case of 0 = ( n + 1 ) 2 n / 2 , we prove the Lipschitz stability in the inverse problem if we choose ( h 1 , . . . , h 0 ) from a set { C 0 ( ( 0 , T ) × ω ) } 0 with an arbitrarily fixed subdomain ω Ω . Moreover we can take 0 = ( n + 3 ) n / 2 by making special choices for h , 1 0 . The proof is...

Lipschitz stability in the determination of the principal part of a parabolic equation

Ganghua Yuan, Masahiro Yamamoto (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Let y(h)(t,x) be one solution to t y ( t , x ) - i , j = 1 n j ( a i j ( x ) i y ( t , x ) ) = h ( t , x ) , 0 < t < T , x Ω with a non-homogeneous term h, and y | ( 0 , T ) × Ω = 0 , where Ω n is a bounded domain. We discuss an inverse problem of determining n(n+1)/2 unknown functions aij by { ν y ( h ) | ( 0 , T ) × Γ 0 , y ( h ) ( θ , · ) } 1 0 after selecting input sources h 1 , . . . , h 0 suitably, where Γ 0 is an arbitrary subboundary, ν denotes the normal derivative, 0 < θ < T and 0 . In the case of 0 = ( n + 1 ) 2 n / 2 , we prove the Lipschitz stability in the inverse problem if we choose ( h 1 , . . . , h 0 ) from a set { C 0 ( ( 0 , T ) × ω ) } 0 with an arbitrarily fixed subdomain ω Ω . Moreover we can take 0 = ( n + 3 ) n / 2 by making special choices for...

Currently displaying 801 – 820 of 1901