Displaying 841 – 860 of 1901

Showing per page

Lyapunov Functions for Weak Solutions of Reaction-Diffusion Equations with Discontinuous Interaction Functions and its Applications

Mark O. Gluzman, Nataliia V. Gorban, Pavlo O. Kasyanov (2015)

Nonautonomous Dynamical Systems

In this paper we investigate additional regularity properties for global and trajectory attractors of all globally defined weak solutions of semi-linear parabolic differential reaction-diffusion equations with discontinuous nonlinearities, when initial data uτ ∈ L2(Ω). The main contributions in this paper are: (i) sufficient conditions for the existence of a Lyapunov function for all weak solutions of autonomous differential reaction-diffusion equations with discontinuous and multivalued interaction...

Mathematical analysis and numerical simulation of a Reynolds-Koiter model for the elastohydrodynamic journal-bearing device

Iñigo Arregui, J. Jesús Cendán, Carlos Vázquez (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The aim of this work is to deduce the existence of solution of a coupled problem arising in elastohydrodynamic lubrication. The lubricant pressure and concentration are modelled by Reynolds equation, jointly with the free-boundary Elrod-Adams model in order to take into account cavitation phenomena. The bearing deformation is solution of Koiter model for thin shells. The existence of solution to the variational problem presents some difficulties: the coupled character of the equations, the nonlinear...

Mathematical analysis and numerical simulation of a Reynolds-Koiter model for the elastohydrodynamic journal-bearing device

Iñigo Arregui, J. Jesús Cendán, Carlos Vázquez (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this work is to deduce the existence of solution of a coupled problem arising in elastohydrodynamic lubrication. The lubricant pressure and concentration are modelled by Reynolds equation, jointly with the free-boundary Elrod-Adams model in order to take into account cavitation phenomena. The bearing deformation is solution of Koiter model for thin shells. The existence of solution to the variational problem presents some difficulties: the coupled character of the equations, the nonlinear...

Mathematical analysis of a two-phase parabolic free boundary problem derived from a Bingham-type model with visco-elastic core

A. Farina, L. Fusi (2005)

Bollettino dell'Unione Matematica Italiana

In this paper we consider a two-phase one-dimensional free boundary problem for the heat equation, arising from a mathematical model for a Bingham-like fluid with a visco-elastic core. The main feature of this problem consists in the very peculiar structure of the free boundary condition, not allowing to use classical tools to prove well posedness. Existence of classical solution is proved using a fixed point argument based on Schauder's theorem. Uniqueness is proved using a technique based on a...

Mathematical framework for current density imaging due to discharge of electro-muscular disruption devices

Jeehyun Lee, Jin Keun Seo, Eung Je Woo (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Electro-muscular disruption (EMD) devices such as TASER M26 and X26 have been used as a less-than-lethal weapon. Such EMD devices shoot a pair of darts toward an intended target to generate an incapacitating electrical shock. In the use of the EMD device, there have been controversial questions about its safety and effectiveness. To address these questions, we need to investigate the distribution of the current density J inside the target produced by the EMD device. One approach is to develop a computational...

Mathematical model of tumour cord growth along the source of nutrient

S. Astanin, A. Tosin (2010)

Mathematical Modelling of Natural Phenomena

A mathematical model of the tumour growth along a blood vessel is proposed. The model employs the mixture theory approach to describe a tissue which consists of cells, extracellular matrix and liquid. The growing tumour tissue is supposed to be surrounded by the host tissue. Tumours where complete oxydation of glucose prevails are considered. Special attention is paid to consistent description of oxygen consumption and growth processes based on the energy balance. A finite difference numerical...

Maximal regularity and viscous incompressible flows with free interface

Senjo Shimizu (2008)

Banach Center Publications

We consider a free interface problem for the Navier-Stokes equations. We obtain local in time unique existence of solutions to this problem for any initial data and external forces, and global in time unique existence of solutions for sufficiently small initial data. Thanks to global in time L p - L q maximal regularity of the linearized problem, we can prove a global in time existence and uniqueness theorem by the contraction mapping principle.

Maximum Principle and Its Application for the Time-Fractional Diffusion Equations

Luchko, Yury (2011)

Fractional Calculus and Applied Analysis

MSC 2010: 26A33, 33E12, 35B45, 35B50, 35K99, 45K05 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversaryIn the paper, maximum principle for the generalized time-fractional diffusion equations including the multi-term diffusion equation and the diffusion equation of distributed order is formulated and discussed. In these equations, the time-fractional derivative is defined in the Caputo sense. In contrast to the Riemann-Liouville fractional derivative, the Caputo fractional...

Microlocal analysis and seismic imaging

Christiaan Stolk (2003/2004)

Séminaire Équations aux dérivées partielles

We study certain Fourier integral operators arising in the inversion of data from reflection seismology.

Currently displaying 841 – 860 of 1901