Displaying 1621 – 1640 of 1901

Showing per page

Two Numerical Methods for the elliptic Monge-Ampère equation

Jean-David Benamou, Brittany D. Froese, Adam M. Oberman (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The numerical solution of the elliptic Monge-Ampère Partial Differential Equation has been a subject of increasing interest recently [Glowinski, in 6th International Congress on Industrial and Applied Mathematics, ICIAM 07, Invited Lectures (2009) 155–192; Oliker and Prussner, Numer. Math.54 (1988) 271–293; Oberman, Discrete Contin. Dyn. Syst. Ser. B10 (2008) 221–238; Dean and Glowinski, in Partial differential equations, Comput. Methods Appl. Sci. 16 (2008) 43–63; Glowinski et al., Japan...

Ulam Stabilities for Partial Impulsive Fractional Differential Equations

Saïd Abbas, Mouffak Benchohra, Juan J. Nieto (2014)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper we investigate the existence of solutions for the initial value problems (IVP for short), for a class of implicit impulsive hyperbolic differential equations by using the lower and upper solutions method combined with Schauder’s fixed point theorem.

Un algorithme d'identification de frontières soumises à des conditions aux limites de Signorini

Slim Chaabane, Mohamed Jaoua (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This work deals with a non linear inverse problem of reconstructing an unknown boundary γ, the boundary conditions prescribed on γ being of Signorini type, by using boundary measurements. The problem is turned into an optimal shape design one, by constructing a Kohn & Vogelius-like cost function, the only minimum of which is proved to be the unknown boundary. Furthermore, we prove that the derivative of this cost function with respect to a direction θ depends only on the state u0, and not...

Currently displaying 1621 – 1640 of 1901