Unicité forte pour des opérateurs elliptiques: Inégalités et contre-exemples
In this paper we study heat kernels associated with a Carnot group G, endowed with a family of collapsing left-invariant Riemannian metrics σε which converge in the Gromov- Hausdorff sense to a sub-Riemannian structure on G as ε→ 0. The main new contribution are Gaussian-type bounds on the heat kernel for the σε metrics which are stable as ε→0 and extend the previous time-independent estimates in [16]. As an application we study well posedness of the total variation flow of graph surfaces over a...
We derive and analyze adaptive solvers for boundary value problems in which the differential operator depends affinely on a sequence of parameters. These methods converge uniformly in the parameters and provide an upper bound for the maximal error. Numerical computations indicate that they are more efficient than similar methods that control the error in a mean square sense.
We derive and analyze adaptive solvers for boundary value problems in which the differential operator depends affinely on a sequence of parameters. These methods converge uniformly in the parameters and provide an upper bound for the maximal error. Numerical computations indicate that they are more efficient than similar methods that control the error in a mean square sense.
We show that the differential inequality has the unique continuation property relative to the Sobolev space , , , if satisfies the conditionfor all compact , where if , we replace by . This resolves a conjecture of B. Simon on unique continuation for Schrödinger operators, , in the case . The proof uses Carleman’s approach together with the following pointwise inequality valid for all and any
Much of this paper will be concerned with the proof of the followingTheorem 1. Suppose d ≥ 3, r = max {d, (3d - 4)/2}. If V ∈ Llocr(Rd), then the differential inequality |Δu| ≤ V |∇u| has the strong unique continuation property in the following sense: If u belongs to the Sobolev space Wloc2,p and if |Δu| ≤ V |∇u| andlimR→0 R-N ∫|x| < R |∇u|p' = 0for all N then u is constant.
We consider a conducting body which presents some (unknown) perfectly insulating defects, such as cracks or cavities, for instance. We perform measurements of current and voltage type on a (known) part of the boundary of the conductor. We prove that, even if the defects are unknown, the current and voltage measurements at the boundary uniquely determine the corresponding electrostatic potential inside the conductor. A corresponding stability result, related to the stability of Neumann problems with...
We consider the problem of localizing an inaccessible piece of the boundary of a conducting medium , and a cavity contained in , from boundary measurements on the accessible part of . Assuming that is the given thermal flux for , and that the corresponding output datum is the temperature measured at a given time for , we prove that and are uniquely localized from knowledge of all possible pairs of input-output data . The same result holds when a mean value of the temperature...
We consider the problem of localizing an inaccessible piece I of the boundary of a conducting medium Ω, and a cavity D contained in Ω, from boundary measurements on the accessible part A of ∂Ω. Assuming that g(t,σ) is the given thermal flux for (t,σ) ∈ (0,T) x A, and that the corresponding output datum is the temperature u(T0,σ) measured at a given time T0 for σ ∈ Aout ⊂ A, we prove that I and D are uniquely localized from knowledge of all possible pairs of input-output data . The same result...
We consider a class of stationary viscous Hamilton-Jacobi equations aswhere , is a bounded and uniformly elliptic matrix and is convex in and grows at most like , with and . Under such growth conditions solutions are in general unbounded, and there is not uniqueness of usual weak solutions. We prove that uniqueness holds in the restricted class of solutions satisfying a suitable energy-type estimate,i.e., for a certain (optimal) exponent . This completes the recent results in [15],...
The study of -holomorphic maps leads to the consideration of the inequations , and . The first inequation is fairly easy to use. The second one, that is relevant to the case of rough structures, is more delicate. The case of vector valued is strikingly different from the scalar valued case. Unique continuation and isolated zeroes are the main topics under study. One of the results is that, in almost complex structures of Hölder class , any -holomorphic curve that is constant on a non-empty...
Many models in biology and ecology can be described by reaction-diffusion equations wit time delay. One of important solutions for these type of equations is the traveling wave solution that shows the phenomenon of wave propagation. The existence of traveling wave fronts has been proved for large class of equations, in particular, the monotone systems, such as the cooperative systems and some competition systems. However, the problem on the uniqueness of traveling wave (for a fixed wave speed)...
In this paper we prove uniqueness results for the renormalized solution, if it exists, of a class of non coercive nonlinear problems whose prototype iswhere is a bounded open subset of , , , belongs to , , is a function in , is a function in and for some and .