Eigenvalue asymptotics for randomly perturbed non-self adjoint operators
In this work we extend a previous work about the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint differential operators with small multiplicative random perturbations, by treating the case of operators on compact manifolds
For a class of non-selfadjoint –pseudodifferential operators with double characteristics, we give a precise description of the spectrum and establish accurate semiclassical resolvent estimates in a neighborhood of the origin. Specifically, assuming that the quadratic approximations of the principal symbol of the operator along the double characteristics enjoy a partial ellipticity property along a suitable subspace of the phase space, namely their singular space, we give a precise description of...
The paper deals with embeddings of function spaces of variable order of differentiation in function spaces of variable order of integration. Here the function spaces of variable order of differentiation are defined by means of pseudodifferential operators.
Nous donnons le comportement asymptotique de valeurs propres d’opérateurs pseudodifférentiels autoadjoints, hypoelliptiques avec perte de dérivées dans le cas où la variété caractéristique est symplectique. Nous généralisatons ainsi la formule du relative aux opérateurs à caractéristiques doubles établie par A. Menikoff et J. Sjöstrand.
We prove that on an asymptotically Euclidean boundary groupoid, the heat kernel of the Laplacian is a smooth groupoid pseudo-differential operator.