Displaying 481 – 500 of 624

Showing per page

Symbol calculus on the affine group "ax + b"

Qihong Fan (1995)

Studia Mathematica

The symbol calculus on the upper half plane is studied from the viewpoint of the Kirillov theory of orbits. The main result is the L p -estimates for Fuchs type pseudodifferential operators.

Symétrisations indépendantes du temps pour certains opérateurs du type de Schrödinger. I

Jiro Takeuchi (2002)

Bollettino dell'Unione Matematica Italiana

Si danno condizioni sufficienti e condizioni necessarie affinché il problema di Cauchy per alcuni operatori di tipo Schrödinger sia ben posto in spazi di Sobolev. Gli operatori qui considerati sono operatori di Schrödinger con potenziali vettoriali complessi, una generalizzazione degli operatori di 2-evoluzione nel senso di Petrowsky, e alcuni sistemi tipo Leray-Volevich di operatori lineari a derivate parziali. Il metodo che usiamo in questo articolo è la simmetrizazione L 2 degli operatori non dipendenti...

Systems of meromorphic microdifferential equations

Orlando Neto (1996)

Banach Center Publications

We introduce the notion of system of meromorphic microdifferential equations. We use it to prove a desingularization theorem for systems of microdifferential equations.

The density of the area integral in + n + 1

Richard F. Gundy, Martin L. Silverstein (1985)

Annales de l'institut Fourier

Let u ( x , y ) be a harmonic function in the half-plane R + n + 1 , n 2 . We define a family of functionals D ( u ; r ) , - > r > , that are analogs of the family of local times associated to the process u ( x t , y t ) where ( x t , y t ) is Brownian motion in R + n + 1 . We show that D ( u ) = sup r D ( u ; r ) is bounded in L p if and only if u ( x , y ) belongs to H p , an equivalence already proved by Barlow and Yor for the supremum of the local times. Our proof relies on the theory of singular integrals due to Caldéron and Zygmund, rather than the stochastic calculus.

The level crossing problem in semi-classical analysis I. The symmetric case

Yves Colin de Verdière (2003)

Annales de l’institut Fourier

We describe a microlocal normal form for a symmetric system of pseudo-differential equations whose principal symbol is a real symmetric matrix with a generic crossing of eigenvalues. We use it in order to give a precise description of the microlocal solutions.

The level crossing problem in semi-classical analysis. II. The Hermitian case

Yves Colin de Verdière (2004)

Annales de l’institut Fourier

This paper is the second part of the paper ``The level crossing problem in semi-classical analysis I. The symmetric case''(Annales de l'Institut Fourier in honor of Frédéric Pham). We consider here the case where the dispersion matrix is complex Hermitian.

Currently displaying 481 – 500 of 624