The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 3501 – 3520 of 4762

Showing per page

Remarks on the tightness of cocycles

Jon Aaronson, Benjamin Weiss (2000)

Colloquium Mathematicae

We prove a generalised tightness theorem for cocycles over an ergodic probability preserving transformation with values in Polish topological groups. We also show that subsequence tightness of cocycles over a mixing probability preserving transformation implies tightness. An example shows that this latter result may fail for cocycles over a mildly mixing probability preserving transformation.

Renormalization of exponential sums and matrix cocycles

Alexander Fedotov, Frédéric Klopp (2004/2005)

Séminaire Équations aux dérivées partielles

In this paper, we present a new point of view on the renormalization of some exponential sums stemming from number theory. We generalize this renormalization procedure to study some matrix cocycles arising in spectral problems of quantum mechanics

Repelling periodic points and landing of rays for post-singularly bounded exponential maps

Anna Miriam Benini, Mikhail Lyubich (2014)

Annales de l’institut Fourier

We show that repelling periodic points are landing points of periodic rays for exponential maps whose singular value has bounded orbit. For polynomials with connected Julia sets, this is a celebrated theorem by Douady, for which we present a new proof. In both cases we also show that points in hyperbolic sets are accessible by at least one and at most finitely many rays. For exponentials this allows us to conclude that the singular value itself is accessible.

Représentation par automate de fonctions continues de tore

F. Blanchard, B. Host, A. Maass (1996)

Journal de théorie des nombres de Bordeaux

Soient A p = { 0 , , p - 1 } et Z A p × A p un sous-système. Z est une représentation en base p d’une fonction f du tore si pour tout point x du tore, ses développements en base p sont liés par le couplage Z aux développements en base p de f ( x ) . On prouve que si f est représentable en base p alors f ( x ) = ( u x + m p - 1 ) mod 1 , où u et m A p . Réciproquement, toutes les fonctions de ce type sont représentables en base p par un transducteur. On montre finalement que les fonctions du tore qui peuvent être représentées par automate cellulaire sont exclusivement les multiplications...

Residuality of dynamical morphisms

R. Burton, M. Keane, Jacek Serafin (2000)

Colloquium Mathematicae

We present a unified approach to the finite generator theorem of Krieger, the homomorphism theorem of Sinai and the isomorphism theorem of Ornstein. We show that in a suitable space of measures those measures which define isomorphisms or respectively homomorphisms form residual subsets.

Resolvent conditions and powers of operators

Olavi Nevanlinna (2001)

Studia Mathematica

We discuss the relation between the growth of the resolvent near the unit circle and bounds for the powers of the operator. Resolvent conditions like those of Ritt and Kreiss are combined with growth conditions measuring the resolvent as a meromorphic function.

Currently displaying 3501 – 3520 of 4762