Capacités symplectiques et applications
In parameter slices of quadratic rational functions, we identify arcs represented by matings of quadratic polynomials. These arcs are on the boundaries of hyperbolic components.
Rauzy classes form a partition of the set of irreducible permutations. They were introduced as part of a renormalization algorithm for interval exchange transformations. We prove an explicit formula for the cardinality of each Rauzy class. Our proof uses a geometric interpretation of permutations and Rauzy classes in terms of translation surfaces and moduli spaces.
Global solvability and asymptotics of semilinear parabolic Cauchy problems in are considered. Following the approach of A. Mielke [15] these problems are investigated in weighted Sobolev spaces. The paper provides also a theory of second order elliptic operators in such spaces considered over , . In particular, the generation of analytic semigroups and the embeddings for the domains of fractional powers of elliptic operators are discussed.
We prove a central limit theorem for linear triangular arrays under weak dependence conditions. Our result is then applied to dependent random variables sampled by a -valued transient random walk. This extends the results obtained by [N. Guillotin-Plantard and D. Schneider, Stoch. Dynamics3 (2003) 477–497]. An application to parametric estimation by random sampling is also provided.
Using the Perron-Frobenius operator we establish a new functional central limit theorem for non-invertible measure preserving maps that are not necessarily ergodic. We apply the result to asymptotically periodic transformations and give a specific example using the tent map.
Soit un difféomorphisme lisse de fixant seulement l’origine, et son centralisateur dans le groupe des difféomorphismes . Des résultat classiques de Kopell et Szekeres montrent que est toujours un groupe à un paramètre. En revanche, Sergeraert a construit un dont le centralisateur est réduit au groupe des itérés de . On présente ici le résultat principal de [3] : peut en fait être un sous-groupe propre et non-dénombrable (donc dense) de .