Bifurcation of gradient mappings possessing the Palais-Smale condition.
The paper deals with the bifurcation phenomena of heteroclinic orbits for diffeomorphisms. The existence of a Melnikov-like function for the two-dimensional case is shown. Simple possibilities of the set of heteroclinic points are described for higherdimensional cases.
Chaos generated by the existence of Smale horseshoe is the well-known phenomenon in the theory of dynamical systems. The Poincaré-Andronov-Melnikov periodic and subharmonic bifurcations are also classical results in this theory. The purpose of this note is to extend those results to ordinary differential equations with multivalued perturbations. We present several examples based on our recent achievements in this direction. Singularly perturbed problems are studied as well. Applications are given...
In this paper we consider a class of perturbation of a Hamiltonian cubic system with 9 finite critical points. Using detection functions, we present explicit formulas for the global and local bifurcations of the flow. We exhibit various patterns of compound eyes of limit cycles. These results are concerned with the weakened Hilbert's 16th problem posed by V. I. Arnold in 1977.