Displaying 61 – 80 of 4759

Showing per page

A cut salad of cocycles

Jon Aaronson, Mariusz Lemańczyk, Dalibor Volný (1998)

Fundamenta Mathematicae

We study the centraliser of locally compact group extensions of ergodic probability preserving transformations. New methods establishing ergodicity of group extensions are introduced, and new examples of squashable and non-coalescent group extensions are constructed.

A descriptive view of unitary group representations

Simon Thomas (2015)

Journal of the European Mathematical Society

In this paper, we will study the relative complexity of the unitary duals of countable groups. In particular, we will explain that if G and H are countable amenable non-type I groups, then the unitary duals of G and H are Borel isomorphic.

A differential geometric setting for dynamic equivalence and dynamic linearization

Jean-Baptiste Pomet (1995)

Banach Center Publications

This paper presents an (infinite-dimensional) geometric framework for control systems, based on infinite jet bundles, where a system is represented by a single vector field and dynamic equivalence (to be precise: equivalence by endogenous dynamic feedback) is conjugation by diffeomorphisms. These diffeomorphisms are very much related to Lie-Bäcklund transformations. It is proved in this framework that dynamic equivalence of single-input systems is the same as static equivalence.

A dynamical invariant for Sierpiński cardioid Julia sets

Paul Blanchard, Daniel Cuzzocreo, Robert L. Devaney, Elizabeth Fitzgibbon, Stefano Silvestri (2014)

Fundamenta Mathematicae

For the family of rational maps zⁿ + λ/zⁿ where n ≥ 3, it is known that there are infinitely many small copies of the Mandelbrot set that are buried in the parameter plane, i.e., they do not extend to the outer boundary of this set. For parameters lying in the main cardioids of these Mandelbrot sets, the corresponding Julia sets are always Sierpiński curves, and so they are all homeomorphic to one another. However, it is known that only those cardioids that are symmetrically located in the parameter...

A dynamical Shafarevich theorem for twists of rational morphisms

Brian Justin Stout (2014)

Acta Arithmetica

Let K denote a number field, S a finite set of places of K, and ϕ: ℙⁿ → ℙⁿ a rational morphism defined over K. The main result of this paper states that there are only finitely many twists of ϕ defined over K which have good reduction at all places outside S. This answers a question of Silverman in the affirmative.

Currently displaying 61 – 80 of 4759