Displaying 21 – 40 of 53

Showing per page

Measure-theoretic unfriendly colorings

Clinton T. Conley (2014)

Fundamenta Mathematicae

We consider the problem of finding a measurable unfriendly partition of the vertex set of a locally finite Borel graph on standard probability space. After isolating a sufficient condition for the existence of such a partition, we show how it settles the dynamical analog of the problem (up to weak equivalence) for graphs induced by free, measure-preserving actions of groups with designated finite generating set. As a corollary, we obtain the existence of translation-invariant random unfriendly colorings...

Mesures invariantes ergodiques pour des produits gauches

Albert Raugi (2007)

Bulletin de la Société Mathématique de France

Soit ( X , 𝔛 ) un espace mesurable muni d’une transformation bijective bi-mesurable τ . Soit ϕ une application mesurable de X dans un groupe localement compact à base dénombrable G . Nous notons τ ϕ l’extension de τ , induite par ϕ , au produit X × G . Nous donnons une description des mesures positives τ ϕ -invariantes et ergodiques. Nous obtenons aussi une généralisation du théorème de réduction cohomologique de O.Sarig [5] à un groupe LCD quelconque.

Moyennes harmoniques

Fernando Alcalde Cuesta (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Nous introduisons une notion de moyenne harmonique pour une marche aléatoire sur une relation d’équivalence mesurée graphée, qui généralise la notion classique de moyenne invariante. Pour les graphages à géométrie bornée, une telle moyenne existe toujours. Nous prouvons qu’une moyenne harmonique devient invariante lorsque la marche aléatoire sur presque toute orbite jouit de bonnes propriétés asymptotiques telles que la propriété de Liouville ou la récurrence.

Nombres de Betti L 2 et facteurs de type II 1

Alain Connes (2002/2003)

Séminaire Bourbaki

Damien Gaboriau a montré récemment que les nombres de Betti L 2 des feuilletages mesurés à feuilles contractiles sont des invariants de la relation d’équivalence associée. Sorin Popa a utilisé ce résultat joint à des propriétés de rigidité des facteurs de type II 1 pour en déduire l’existence de facteurs de type II 1 dont le groupe fondamental est trivial.

Non-orbit equivalent actions of 𝔽 n

Adrian Ioana (2009)

Annales scientifiques de l'École Normale Supérieure

For any 2 n , we construct a concrete 1-parameter family of non-orbit equivalent actions of the free group 𝔽 n . These actions arise as diagonal products between a generalized Bernoulli action and the action 𝔽 n ( 𝕋 2 , λ 2 ) , where 𝔽 n is seen as a subgroup of SL 2 ( ) .

On ergodicity of some cylinder flows

Krzysztof Frączek (2000)

Fundamenta Mathematicae

We study ergodicity of cylinder flows of the form    T f : T × T × , T f ( x , y ) = ( x + α , y + f ( x ) ) , where f : T is a measurable cocycle with zero integral. We show a new class of smooth ergodic cocycles. Let k be a natural number and let f be a function such that D k f is piecewise absolutely continuous (but not continuous) with zero sum of jumps. We show that if the points of discontinuity of D k f have some good properties, then T f is ergodic. Moreover, there exists ε f > 0 such that if v : T is a function with zero integral such that D k v is of bounded variation...

On measure theoretical analogues of the Takesaki structure theorem for type III factors

Alexandre Danilenko, Toshihiro Hamachi (2000)

Colloquium Mathematicae

The orbit equivalence of type I I I 0 ergodic equivalence relations is considered. We show that it is equivalent to the outer conjugacy problem for the natural trace-scaling action of a countable dense ℝ-subgroup by automorphisms of the Radon-Nikodym skew product extensions of these relations. A similar result holds for the weak equivalence of arbitrary type I I I 0 cocycles with values in Abelian groups.

On solvability of the cohomology equation in function spaces

Ryotaro Sato (2003)

Studia Mathematica

Let T be an endomorphism of a probability measure space (Ω,𝓐,μ), and f be a real-valued measurable function on Ω. We consider the cohomology equation f = h ∘ T - h. Conditions for the existence of real-valued measurable solutions h in some function spaces are deduced. The results obtained generalize and improve a recent result of Alonso, Hong and Obaya.

On subrelations of ergodic measured type III equivalence relations

Alexandre Danilenko (2000)

Colloquium Mathematicae

We discuss the classification up to orbit equivalence of inclusions 𝑆 ⊂ ℛ of measured ergodic discrete hyperfinite equivalence relations. In the case of type III relations, the orbit equivalence classes of such inclusions of finite index are completely classified in terms of triplets consisting of a transitive permutation group G on a finite set (whose cardinality is the index of 𝑆 ⊂ ℛ), an ergodic nonsingular ℝ-flow V and a homomorphism of G to the centralizer of V.

On the ergodic decomposition for a cocycle

Jean-Pierre Conze, Albert Raugi (2009)

Colloquium Mathematicae

Let (X,,μ,τ) be an ergodic dynamical system and φ be a measurable map from X to a locally compact second countable group G with left Haar measure m G . We consider the map τ φ defined on X × G by τ φ : ( x , g ) ( τ x , φ ( x ) g ) and the cocycle ( φ ) n generated by φ. Using a characterization of the ergodic invariant measures for τ φ , we give the form of the ergodic decomposition of μ ( d x ) m G ( d g ) or more generally of the τ φ -invariant measures μ χ ( d x ) χ ( g ) m G ( d g ) , where μ χ ( d x ) is χ∘φ-conformal for an exponential χ on G.

Opening gaps in the spectrum of strictly ergodic Schrödinger operators

Artur Avila, Jairo Bochi, David Damanik (2012)

Journal of the European Mathematical Society

We consider Schrödinger operators with dynamically defined potentials arising from continuous sampling along orbits of strictly ergodic transformations. The Gap Labeling Theorem states that the possible gaps in the spectrum can be canonically labelled by an at most countable set defined purely in terms of the dynamics. Which labels actually appear depends on the choice of the sampling function; the missing labels are said to correspond to collapsed gaps. Here we show that for any collapsed gap,...

Relative property (T) and linear groups

Talia Fernós (2006)

Annales de l’institut Fourier

Relative property (T) has recently been used to show the existence of a variety of new rigidity phenomena, for example in von Neumann algebras and the study of orbit-equivalence relations. However, until recently there were few examples of group pairs with relative property (T) available through the literature. This motivated the following result: A finitely generated group Γ admits a special linear representation with non-amenable R -Zariski closure if and only if it acts on an Abelian group A (of...

Remarks on the tightness of cocycles

Jon Aaronson, Benjamin Weiss (2000)

Colloquium Mathematicae

We prove a generalised tightness theorem for cocycles over an ergodic probability preserving transformation with values in Polish topological groups. We also show that subsequence tightness of cocycles over a mixing probability preserving transformation implies tightness. An example shows that this latter result may fail for cocycles over a mildly mixing probability preserving transformation.

Rigidity results for Bernoulli actions and their von Neumann algebras

Stefaan Vaes (2005/2006)

Séminaire Bourbaki

Using very original methods from operator algebras, Sorin Popa has shown that the orbit structure of the Bernoulli action of a property (T) group, completely remembers the group and the action. This information is even essentially contained in the crossed product von Neumann algebra. This is the first von Neumann strong rigidity theorem in the literature. The same methods allow Popa to obtain II 1 factors with prescribed countable fundamental group.

Semisimple extensions of irrational rotations

Mariusz Lemańczyk, Mieczysław K. Mentzen, Hitoshi Nakada (2003)

Studia Mathematica

We show that semisimple actions of l.c.s.c. Abelian groups and cocycles with values in such groups can be used to build new examples of semisimple automorphisms (ℤ-actions) which are relatively weakly mixing extensions of irrational rotations.

Currently displaying 21 – 40 of 53