Corrigendum to: Stable ergodicity and julienne quasi-conformality, J. Eur. Math. Soc. 2, 1-52
The purpose of this paper is to show that if σ is the maximal spectral type of Chacon’s transformation, then for any d ≠ d’ we have . First, we establish the disjointness of convolutions of the maximal spectral type for the class of dynamical systems that satisfy a certain algebraic condition. Then we show that Chacon’s automorphism belongs to this class.
For n ≥ 1 we consider the class JP(n) of dynamical systems each of whose ergodic joinings with a Cartesian product of k weakly mixing automorphisms (k ≥ n) can be represented as the independent extension of a joining of the system with only n coordinate factors. For n ≥ 2 we show that, whenever the maximal spectral type of a weakly mixing automorphism T is singular with respect to the convolution of any n continuous measures, i.e. T has the so-called convolution singularity property of order n,...
Soit U une fonction définie sur un ensemble fini E muni d'un noyau markovien irréductible M. L'objectif du papier est de comparer théoriquement deux procédures stochastiques de minimisation globale de U : le recuit simulé et un algorithme génétique. Pour ceci on se placera dans la situation idéalisée d'une infinité de particules disponibles et nous ferons une hypothèse commode d'existence de suffisamment de symétries du cadre (E,M,U). On verra notamment que contrairement au recuit simulé, toute...
A number of recent works have sought to generalize the Kolmogorov-Sinai entropy of probability-preserving transformations to the setting of Markov operators acting on the integrable functions on a probability space (X,μ). These works have culminated in a proof by Downarowicz and Frej that various competing definitions all coincide, and that the resulting quantity is uniquely characterized by certain abstract properties. On the other hand, Makarov has shown that this 'operator...
Two types of weighted ergodic averages are studied. It is shown that if F = {Fₙ} is an admissible superadditive process relative to a measure preserving transformation, then a Wiener-Wintner type result holds for F. Using this result new good classes of weights generated by such processes are obtained. We also introduce another class of weights via the group of unitary functions, and study the convergence of the corresponding weighted averages. The limits of such weighted averages are also identified....
Recently, T. Tao gave a finitary proof of a convergence theorem for multiple averages with several commuting transformations, and soon thereafter T. Austin gave an ergodic proof of the same result. Although we give here another proof of the same theorem, this is not the main goal of this paper. Our main concern is to provide tools for the case of several commuting transformations, similar to the tools successfully used in the case of a single transformation, with the idea that they may be used in...
This work provides rates of convergence in the Darling-Kac law for infinite measure preserving Pomeau-Manneville (unit interval) maps. Along the way we obtain error rates for the stable law associated with the first return map and the first return time to some suitable set inside the unit interval.
Nous étudions un exemple de transformation non uniformément hyperbolique de l’intervalle . Des exemples analogues ont été étudiés par de nombreux auteurs. Notre méthode utilise une théorie spectrale, pour une classe d’opérateurs vérifiant des conditions faibles de Doeblin-Fortet, introduite dans [1]. Elle nous permet, en particulier, de donner une estimation de la vitesse de décroissance des corrélations pour des fonctions non höldériennes.
The rate of growth of an operator T satisfying the mean ergodic theorem (MET) cannot be faster than linear. It was recently shown (Kornfeld-Kosek, Colloq. Math. 98 (2003)) that for every γ > 0, there are positive L¹[0,1] operators T satisfying MET with . In the class of positive L¹ operators this is the most one can hope for in the sense that for every such operator T, there exists a γ₀ > 0 such that In this note we construct an example of a nonpositive L¹ operator with the highest possible...
We study a generalized notion of a homogeneous skew-product extension of a probability-preserving system in which the homogeneous space fibres are allowed to vary over the ergodic decomposition of the base. The construction of such extensions rests on a simple notion of 'direct integral' for a 'measurable family' of homogeneous spaces, which has a number of precedents in older literature. The main contribution of the present paper is the systematic development of a formalism for handling such extensions,...
In this article we prove that the fibration of by potentials which are isospectral for the 1-dimensional periodic Schrödinger equation, is trivial. This result can be applied, in particular, to -gap solutions of the Korteweg-de Vries equation (KdV) on the circle: one shows that KdV, a completely integrable Hamiltonian system, has global action-angle variables.
Let be the tent map with slope a. Let c be its turning point, and the absolutely continuous invariant probability measure. For an arbitrary, bounded, almost everywhere continuous function g, it is shown that for almost every a, . As a corollary, we deduce that the critical point of a quadratic map is generically not typical for its absolutely continuous invariant probability measure, if it exists.
We study ergodic properties of the class of Gaussian automorphisms whose ergodic self-joinings remain Gaussian. For such automorphisms we describe the structure of their factors and of their centralizer. We show that Gaussian automorphisms with simple spectrum belong to this class. We prove a new sufficient condition for non-disjointness of automorphisms giving rise to a better understanding of Furstenberg's problem relating disjointness to the lack of common factors. This...